We demonstrate that, through appropriate prompting, GPT-3 family of models can be triggered to perform iterative behaviours necessary to execute (rather than just write or recall) programs that involve loops, including several popular algorithms found in computer science curricula or software developer interviews. We trigger execution and description of Iterations by Regimenting Self-Attention (IRSA) in one (or a combination) of three ways: 1) Using strong repetitive structure in an example of an execution path of a target program for one particular input, 2) Prompting with fragments of execution paths, and 3) Explicitly forbidding (skipping) self-attention to parts of the generated text. On a dynamic program execution, IRSA leads to larger accuracy gains than replacing the model with the much more powerful GPT-4. IRSA has promising applications in education, as the prompts and responses resemble student assignments in data structures and algorithms classes. Our findings hold implications for evaluating LLMs, which typically target the in-context learning: We show that prompts that may not even cover one full task example can trigger algorithmic behaviour, allowing solving problems previously thought of as hard for LLMs, such as logical puzzles. Consequently, prompt design plays an even more critical role in LLM performance than previously recognized.


翻译:我们证明,通过适当的提示,GPT-3 系列模型可以被触发执行(而不仅仅是写入或回忆)涉及循环的程序,包括计算机科学课程或软件开发人员面试中的几个常见算法。我们通过一种或三种组合的方式触发迭代行为,以执行重复行为:通过管理自注意力 (IRSA) 1) 在一个特定输入的目标程序的执行路径示例中使用强烈的重复结构, 2) 提示执行路径的片段,以及 3) 明确禁止 (跳过) 生成的文本的某些部分的自注意力。在动态程序执行中,IRSA 的准确度提升要比将模型替换为更强大的 GPT-4 更高,IRSA 在教育领域具有很有前途的应用,因为提示和响应类似于数据结构和算法课程中的学生作业。我们的发现具有评估 LLMs 的意义,这些模型通常针对上下文学习:我们表明,甚至可能不覆盖一个完整任务示例的提示可以触发算法行为,从而允许解决先前认为 LLMs 很难解决的问题,例如逻辑难题。因此,与以前认为的相比,提示设计在 LLMs 的性能评估中扮演了更为关键的角色。

0
下载
关闭预览

相关内容

利用注意力机制来“动态”地生成不同连接的权重,这就是自注意力模型(Self-Attention Model). 注意力机制模仿了生物观察行为的内部过程,即一种将内部经验和外部感觉对齐从而增加部分区域的观察精细度的机制。注意力机制可以快速提取稀疏数据的重要特征,因而被广泛用于自然语言处理任务,特别是机器翻译。而自注意力机制是注意力机制的改进,其减少了对外部信息的依赖,更擅长捕捉数据或特征的内部相关性
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【Maning新书】数据科学训练营,Data Science Bookcamp,706页pdf
专知会员服务
74+阅读 · 2021年11月19日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
我如何在 Notion 中模拟我的「第二大脑」
少数派
0+阅读 · 2022年8月29日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关资讯
我如何在 Notion 中模拟我的「第二大脑」
少数派
0+阅读 · 2022年8月29日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员