Recently, learning methods have been designed to create Multiplane Images (MPIs) for view synthesis. While MPIs are extremely powerful and facilitate high quality renderings, a great amount of memory is required, making them impractical for many applications. In this paper, we propose a learning method that optimizes the available memory to render compact and adaptive MPIs. Our MPIs avoid redundant information and take into account the scene geometry to determine the depth sampling.


翻译:最近,我们设计了一些学习方法来创建多平面图像(MPIs)来进行视觉合成。尽管多平面图像(MPIs)非常强大,并且便于高质量的投影,但需要大量的内存,使许多应用不切实际。在本文中,我们提出了一个学习方法,优化现有内存,使多平面图像(MPIs)变得紧凑和适应性强。我们的多平面图像(MPIs)避免了多余的信息,并且考虑到现场几何来决定深度取样。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
医学图像分割的深度学习解决方案综述
专知会员服务
88+阅读 · 2020年2月14日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
55+阅读 · 2019年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年11月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月11日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年11月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员