We have adapted the use of exponentially averaged momentum in PSO to multi-objective optimization problems. The algorithm was built on top of SMPSO, a state-of-the-art MOO solver, and we present a novel mathematical analysis of constriction fairness. We extend this analysis to the use of momentum and propose rich alternatives of parameter sets which are theoretically sound. We call our proposed algorithm "Fairly Constricted PSO with Exponentially-Averaged Momentum", FCPSO-em.


翻译:我们已经将使用PSO指数平均动力的指数平均动力来适应多目标优化问题。算法建在SMPSO的顶端,这是一个最先进的MOO解答器,我们提出了关于收缩公平性的新颖数学分析。我们将这一分析扩展至使用动力并提出在理论上合理的参数组的丰富替代方法。我们称我们提议的算法为“公平受限制的PSO,具有极强的电动脉冲 ”, FCPSO-em。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
28+阅读 · 2020年8月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
FAIR&MIT提出知识蒸馏新方法:数据集蒸馏
机器之心
3+阅读 · 2019年2月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
6+阅读 · 2017年7月6日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
0+阅读 · 2021年5月18日
Arxiv
7+阅读 · 2021年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
FAIR&MIT提出知识蒸馏新方法:数据集蒸馏
机器之心
3+阅读 · 2019年2月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员