Software systems are increasingly making decisions on behalf of humans, raising concerns about the fairness of such decisions. Such concerns are usually attributed to flaws in algorithmic design or biased data, but we argue that they are often the result of a lack of explicit specification of fairness requirements. However, such requirements are challenging to elicit, a problem exacerbated by increasingly dynamic environments in which software systems operate, as well as stakeholders' changing needs. Therefore, capturing all fairness requirements during the production of software is challenging, and is insufficient for addressing software changes post deployment. In this paper, we propose adaptive fairness as a means for maintaining the satisfaction of changing fairness requirements. We demonstrate how to combine requirements-driven and resource-driven adaptation in order to address variabilities in both fairness requirements and their associated resources. Using models for fairness requirements, resources, and their relations, we show how the approach can be used to provide systems owners and end-users with capabilities that reflect adaptive fairness behaviours at runtime. We demonstrate our approach using an example drawn from shopping experiences of citizens. We conclude with a discussion of open research challenges in the engineering of adaptive fairness in human-facing software systems.


翻译:软件系统正越来越多地代表人作出决策,使人对此类决定的公正性产生关切。这种关切通常归因于算法设计或偏差数据方面的缺陷,但我们认为,这些关切往往是缺乏明确说明公平要求的结果,然而,这种要求具有引起的挑战性,因为软件系统运行的环境日益活跃,以及利益攸关方不断变化的需求,使这一问题更加严重。因此,在软件生产过程中掌握所有公平要求具有挑战性,不足以应对软件部署后的变化。我们在本文件中提议,以适应性公平为手段,保持对不断变化的公平要求的满足。我们展示了如何将需求驱动和资源驱动的适应性调整结合起来,以解决公平要求及其相关资源的不稳定性。利用公平要求、资源及其关系的模式,我们展示了如何利用这种方法向系统所有人和终端用户提供反映运行时适应性公平行为的能力。我们以公民购物经验为榜样,展示了我们的方法。我们最后讨论了在设计人造软件系统适应性公平方面的公开研究挑战。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员