We introduce the safe logrank test, a version of the logrank test that provides type-I error guarantees under optional stopping and optional continuation. The test is sequential without the need to specify a maximum sample size or stopping rule and allows for cumulative meta-analysis with Type-I error control. The method can be extended to define anytime-valid confidence intervals. All these properties are a virtue of the recently developed martingale tests based on E-variables, of which the safe logrank test is an instance. We demonstrate the validity of the underlying nonnegative martingale in a semiparametric setting of proportional hazards and show how to extend it to ties, Cox' regression and confidence sequences. Using a Gaussian approximation on the logrank statistic, we show that the safe logrank test (which itself is always exact) has a similar rejection region to O'Brien-Fleming alpha-spending but with the potential to achieve 100% power by optional continuation. Although our approach to study design requires a larger sample size, the expected sample size is competitive by optional stopping.
翻译:我们引入了安全记录测试, 这是一种为选择性停止和选择性继续提供类型I错误保障的对数测试。 测试顺序顺序不需要指定最大样本大小或停止规则, 并允许使用类型I错误控制进行累积元分析。 方法可以扩展以定义随时有效的信任间隔。 所有这些属性都是最近开发的基于电子变量的马丁格尔测试的产物, 安全记录测试就是其中的一个实例。 我们在比例危害的半对称设置中演示了基础非负性马丁格尔的有效性, 并演示如何将其扩展至关联、 Cox 回归和信任序列。 在对数统计中使用高斯近似值的对数, 我们显示安全记录测试( 本身总是精确的) 具有与 O'Brien- Fleming alma- spoint 相似的类似拒绝区域, 但有可能通过选择性继续实现100%的能量。 尽管我们的研究设计方法需要更大的样本大小, 但预期的样本大小通过选择性停止具有竞争力 。