Rotation equivariance is a desirable property in many practical applications such as motion forecasting and 3D perception, where it can offer benefits like sample efficiency, better generalization, and robustness to input perturbations. Vector Neurons (VN) is a recently developed framework offering a simple yet effective approach for deriving rotation-equivariant analogs of standard machine learning operations by extending one-dimensional scalar neurons to three-dimensional "vector neurons." We introduce a novel "VN-Transformer" architecture to address several shortcomings of the current VN models. Our contributions are: $(i)$ we derive a rotation-equivariant attention mechanism which eliminates the need for the heavy feature preprocessing required by the original Vector Neurons models; $(ii)$ we extend the VN framework to support non-spatial attributes, expanding the applicability of these models to real-world datasets; $(iii)$ we derive a rotation-equivariant mechanism for multi-scale reduction of point-cloud resolution, greatly speeding up inference and training; $(iv)$ we show that small tradeoffs in equivariance ($\epsilon$-approximate equivariance) can be used to obtain large improvements in numerical stability and training robustness on accelerated hardware, and we bound the propagation of equivariance violations in our models. Finally, we apply our VN-Transformer to 3D shape classification and motion forecasting with compelling results.


翻译:在运动预测和3D感知等许多实际应用中,轮廓均匀是一种可取的属性,例如运动预测和3D感知,它可以提供样样效率、更好的一般化和对输入扰动的稳健度等好处。矢量中子(VN)是一个最近开发的框架,它提供了一种简单而有效的方法,通过将一维变形神经元扩大至三维“矢量神经元”来得出标准机学习操作的旋转-静态类比。 我们引入了一个新型的“VN-变形”结构,以解决当前VN模型的若干缺陷。 我们的贡献是: $(i) 我们得到一个旋转-偏差关注机制,它消除了原矢量中神经模型所要求的重特性预处理的需要; $(ii) 我们扩展了VN框架,以支持非空间属性,将这些模型的适用范围扩大到现实世界数据集; $(iii) 我们获得一个旋转-Q-Q-Q-Q-递增度机制,大大加快了振荡度和训练速度; 美元(iv)我们使用的大幅贸易稳定-升级-升级-升级-我们使用的硬度-升级-升级-我们使用的硬性)在稳定中,我们使用的硬度模型中,我们使用了。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
25+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Local search for efficient causal effect estimation
Arxiv
0+阅读 · 2022年7月22日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员