Knowing chemical soil properties might be determinant in crop management and total yield production. Traditional property estimation approaches are time-consuming and require complex lab setups, refraining farmers from taking steps towards optimal practices in their crops promptly. Property estimation from spectral signals(vis-NIRS), emerged as a low-cost, non-invasive, and non-destructive alternative. Current approaches use mathematical and statistical techniques, avoiding machine learning framework. Here we propose both regression and classification with machine learning techniques to assess performance in the prediction and infer categories of common soil properties (pH, soil organic matter, Ca, Na, K, and Mg), evaluated by the most common metrics. In sugarcane soils, we use regression to estimate properties and classification to assess soil's property status and report the direct relation between spectra bands and direct measure of certain properties. In both cases, we achieved similar performance on similar setups reported in the literature.


翻译:了解化学土壤特性可能是作物管理和总产量生产的决定因素。传统财产估算方法耗时费时,需要复杂的实验室设置,农民不能迅速采取步骤,在作物中采取最佳做法。光谱信号(VIS-NIRS)作为低成本、非侵入性和非破坏性的替代物,对财产进行估算;目前的方法使用数学和统计技术,避免机器学习框架。在这里,我们建议采用机械学习技术进行回归和分类,以评估以最常用指标评估的共同土壤特性(pH、土壤有机物、Ca、Na、K和Mg)的预测和推断类别(pH、土壤有机物、Ca、Na、K和Mg)的性能。在甘蔗土壤中,我们利用回归来估计特性和分类来评估土壤财产状况,并报告光谱带与某些特性的直接测量之间的直接关系。在这两种情况下,我们在文献中报告的类似构造方面都取得了类似的表现。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
18+阅读 · 2019年1月16日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员