Machine learning models often fail to generalize well under distributional shifts. Understanding and overcoming these failures have led to a research field of Out-of-Distribution (OOD) generalization. Despite being extensively studied for static computer vision tasks, OOD generalization has been underexplored for time series tasks. To shine light on this gap, we present WOODS: eight challenging open-source time series benchmarks covering a diverse range of data modalities, such as videos, brain recordings, and sensor signals. We revise the existing OOD generalization algorithms for time series tasks and evaluate them using our systematic framework. Our experiments show a large room for improvement for empirical risk minimization and OOD generalization algorithms on our datasets, thus underscoring the new challenges posed by time series tasks. Code and documentation are available at https://woods-benchmarks.github.io .
翻译:机器学习模型经常在分布偏移情况下无法很好地推广。理解和克服这些失败已经引领了一个超分布广义化的研究领域。尽管已经广泛研究了静态计算机视觉任务的超分布广义化,但对于时间序列任务而言尚未得到充分探索。为了填补这一差距,我们提出了 WOODS:八个挑战性的开源时间序列基准,涵盖各种各样的数据形式,例如视频、脑电图和传感器信号。我们修订了现有的面向时间序列任务的超分布广义化算法,并使用我们的系统框架进行了评估。我们的实验表明,在我们的数据集上,经验风险最小化和超分布广义化算法存在很大的改进空间,从而强调了时间序列任务所带来的新挑战。代码和文档可以在 https://woods-benchmarks.github.io 上找到。