This paper develops an algorithmic-based approach for proving inductive properties of propositional sequent systems such as admissibility, invertibility, cut-elimination, and identity expansion. Although undecidable in general, these structural properties are crucial in proof theory because they can reduce the proof-search effort and further be used as scaffolding for obtaining other meta-results such as consistency. The algorithms -- which take advantage of the rewriting logic meta-logical framework, and use rewrite- and narrowing-based reasoning -- are explained in detail and illustrated with examples throughout the paper. They have been fully mechanized in the L-Framework, thus offering both a formal specification language and off-the-shelf mechanization of the proof-search algorithms coming together with semi-decision procedures for proving theorems and meta-theorems of the object system. As illustrated with case studies in the paper, the L-Framework, achieves a great degree of automation when used on several propositional sequent systems, including single conclusion and multi-conclusion intuitionistic logic, classical logic, classical linear logic and its dyadic system, intuitionistic linear logic, and normal modal logics.


翻译:本文发展了一种基于算法的方法,用以证明诸如可采性、可逆性、切除和身份扩展等建议序列系统的内在特性。虽然一般而言这些结构性特性不可忽略,但这些结构特性在证据理论中至关重要,因为它们可以减少校准搜索努力,并进一步用作获取其他元结果如一致性等其他元结果的支架。这些算法 -- -- 利用重写逻辑元学框架,以及使用重写和缩小推理 -- -- 详细解释并用整个文件的示例加以说明。这些算法在L-Framwork中已经完全机械化,从而提供了一种正式的规格语言和现成的机械化校准算法,连同用于证明对象系统理论和元理论的半决断程序。如文件中的案例研究所示,L-Framerwork在使用若干建议序列系统时,包括单项结论和多级直觉逻辑、古典逻辑、古典直线逻辑和其直线逻辑和直线逻辑等逻辑,实现了高度的自动化。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月3日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员