Focusing on a high dimensional linear model $y = X\beta + \epsilon$ with dependent, non-stationary, and heteroskedastic errors, this paper applies the debiased and threshold ridge regression method that gives a consistent estimator for linear combinations of $\beta$; and derives a Gaussian approximation theorem for the estimator. Besides, it proposes a dependent wild bootstrap algorithm to construct the estimator's confidence intervals and perform hypothesis testing. Numerical experiments on the proposed estimator and the bootstrap algorithm show that they have favorable finite sample performance. Research on a high dimensional linear model with dependent(non-stationary) errors is sparse, and our work should bring some new insights to this field.
翻译:本文以高维线性模型 $y = X\beta +\ epsilon$ 为重点, 带有依赖性、非静止性, 和 hestrokedacistic 差错, 本文采用了偏差和临界脊回归法, 给直线组合 $\beta 提供一致的估测器; 并得出一个测量器的高斯近距离近距离理论。 此外, 它提议了一种依赖性的野靴套算法, 以构建测量器的置信间隔, 并进行假设测试。 对拟议测算器和测算器算法的数值实验显示, 它们具有有利的有限样本性能。 对具有依赖性( 非静止)错误的高维线性线性模型的研究很少, 我们的工作应该为这个领域带来一些新的洞察力 。