We derive so-called weak and strong \textit{max-laws of large numbers} for $% \max_{1\leq i\leq k_{n}}|1/n\sum_{t=1}^{n}x_{i,n,t}|$ for zero mean stochastic triangular arrays $\{x_{i,n,t}$ $:$ $1$ $\leq $ $t$ $\leq n\}_{n\geq 1}$, with dimension counter $i$ $=$ $1,...,k_{n}$ and dimension $% k_{n}$ $\rightarrow $ $\infty $. Rates of convergence are also analyzed based on feasible sequences $\{k_{n}\}$. We work in three dependence settings: independence, Dedecker and Prieur's (2004) $\tau $-mixing and Wu's (2005) physical dependence. We initially ignore cross-coordinate $i$ dependence as a benchmark. We then work with martingale, nearly martingale, and mixing coordinates to deliver improved bounds on $k_{n}$. Finally, we use the results in three applications, each representing a key novelty: we ($i$) bound $k_{n}$\ for a max-correlation statistic for regression residuals under $\alpha $-mixing or physical dependence; ($ii$) extend correlation screening, or marginal regressions, to physical dependent data with diverging dimension $k_{n}$ $\rightarrow $ $\infty $; and ($iii$) test a high dimensional parameter after partialling out a fixed dimensional nuisance parameter in a linear time series regression model under $\tau $% -mixing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】线性代数概论:计算、应用和理论,435页pdf
专知会员服务
59+阅读 · 2023年1月30日
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
专知会员服务
25+阅读 · 2021年7月31日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
动手写机器学习算法:SVM支持向量机(附代码)
七月在线实验室
12+阅读 · 2017年12月5日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 10月6日
VIP会员
相关VIP内容
【干货书】线性代数概论:计算、应用和理论,435页pdf
专知会员服务
59+阅读 · 2023年1月30日
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
专知会员服务
25+阅读 · 2021年7月31日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
动手写机器学习算法:SVM支持向量机(附代码)
七月在线实验室
12+阅读 · 2017年12月5日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员