In the present paper, we study the analyticity of the leftmost eigenvalue of the linear elliptic partial differential operator with random coefficient and analyze the convergence rate of the quasi-Monte Carlo method for approximation of the expectation of this quantity. The random coefficient is assumed to be represented by an affine expansion $a_0(\boldsymbol{x})+\sum_{j\in \mathbb{N}}y_ja_j(\boldsymbol{x})$, where elements of the parameter vector $\boldsymbol{y}=(y_j)_{j\in \mathbb{N}}\in U^\infty$ are independent and identically uniformly distributed on $U:=[-\frac{1}{2},\frac{1}{2}]$. Under the assumption $ \|\sum_{j\in \mathbb{N}}\rho_j|a_j|\|_{L_\infty(D)} <\infty$ with some positive sequence $(\rho_j)_{j\in \mathbb{N}}\in \ell_p(\mathbb{N})$ for $p\in (0,1]$ we show that for any $\boldsymbol{y}\in U^\infty$, the elliptic partial differential operator has a countably infinite number of eigenvalues $(\lambda_j(\boldsymbol{y}))_{j\in \mathbb{N}}$ which can be ordered non-decreasingly. Moreover, the spectral gap $\lambda_2(\boldsymbol{y})-\lambda_1(\boldsymbol{y})$ is uniformly positive in $U^\infty$. From this, we prove the holomorphic extension property of $\lambda_1(\boldsymbol{y})$ to a complex domain in $\mathbb{C}^\infty$ and estimate mixed derivatives of $\lambda_1(\boldsymbol{y})$ with respect to the parameters $\boldsymbol{y}$ by using Cauchy's formula for analytic functions. Based on these bounds we prove the dimension-independent convergence rate of the quasi-Monte Carlo method to approximate the expectation of $\lambda_1(\boldsymbol{y})$.
翻译:在本文中,我们研究线性椭圆部分操作员的左偏偏差值 {(boldsymbol{(boldsymbol{x}) 美元, 其中参数矢量的元素 {(boldsy}) 美元1美元, 并分析准蒙特卡罗方法的趋近率。 随机系数被假定为 折合膨胀$_0 (\ boldsybol{x} 。 在假设$ subj} in\\ halthbbb{( boldsy} nbsy} 美元(boldsy_ ball} 美元 美元) 的值 。 在参数矢量( little{bsy} $1 (y_j_j) 美元 美元的值的值 。 以正数=\\\\\\\ b\ b) 以正数表示(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx