Input perturbation methods occlude parts of an input to a function and measure the change in the function's output. Recently, input perturbation methods have been applied to generate and evaluate saliency maps from convolutional neural networks. In practice, neutral baseline images are used for the occlusion, such that the baseline image's impact on the classification probability is minimal. However, in this paper we show that arguably neutral baseline images still impact the generated saliency maps and their evaluation with input perturbations. We also demonstrate that many choices of hyperparameters lead to the divergence of saliency maps generated by input perturbations. We experimentally reveal inconsistencies among a selection of input perturbation methods and find that they lack robustness for generating saliency maps and for evaluating saliency maps as saliency metrics.


翻译:输入扰动方法将部分输入到函数中, 并测量函数输出的变化。 最近, 输入扰动方法被用于生成和评估来自进化神经网络的显著地图。 在实践中, 中性基线图像用于隔离, 因此基准图像对分类概率的影响微乎其微。 但是, 在本文中, 我们显示, 可以说中性的基线图像仍然影响生成的显著地图, 并用输入扰动来评估这些图像。 我们还表明, 许多选择的超参数导致输入扰动生成的突出地图的差异。 我们实验性地揭示了输入扰动方法中的一些不一致之处, 发现这些图像在生成显著地图和评估突出的特征地图时缺乏坚固性。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2021年3月16日
【NeurIPS 2020】深度学习的不确定性估计和鲁棒性
专知会员服务
49+阅读 · 2020年12月8日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2021年3月16日
【NeurIPS 2020】深度学习的不确定性估计和鲁棒性
专知会员服务
49+阅读 · 2020年12月8日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员