Action Unit (AU) detection aims at automatically caracterizing facial expressions with the muscular activations they involve. Its main interest is to provide a low-level face representation that can be used to assist higher level affective computing tasks learning. Yet, it is a challenging task. Indeed, the available databases display limited face variability and are imbalanced toward neutral expressions. Furthermore, as AU involve subtle face movements they are difficult to annotate so that some of the few provided datapoints may be mislabeled. In this work, we aim at exploiting label smoothing ability to mitigate noisy examples impact by reducing confidence [1]. However, applying label smoothing as it is may aggravate imbalance-based pre-existing under-confidence issue and degrade performance. To circumvent this issue, we propose Robin Hood Label Smoothing (RHLS). RHLS principle is to restrain label smoothing confidence reduction to the majority class. In that extent, it alleviates both the imbalance-based over-confidence issue and the negative impact of noisy majority class examples. From an experimental standpoint, we show that RHLS provides a free performance improvement in AU detection. In particular, by applying it on top of a modern multi-task baseline we get promising results on BP4D and outperform state-of-the-art methods on DISFA.
翻译:行动股(AU)的检测旨在自动将面部表情与肌肉启动器进行切除,其主要利益在于提供一个低层次的面部代表,可以用来帮助更高层次的情感化计算任务学习。然而,这是一项具有挑战性的任务。事实上,现有数据库显示的面貌变化有限,而且偏向中性表达。此外,由于AU涉及微妙的面部运动,因此难以说明这些运动,因此提供的数据点中有些可能存在错误标签。在这项工作中,我们的目标是利用标签的光滑能力,通过降低信心[1]来缓解吵闹的例子影响。然而,采用光滑的标签可能会加剧基于不平衡的先前信任状态问题,降低业绩。为避免这一问题,我们建议罗宾·霍尔·拉贝尔(RHABel)平滑(RHLS) 。RHLS原则是限制将平滑降低信心贴在多数阶层。在这方面,它减少了基于不平衡的过度信任问题和噪音占多数阶层的负面影响。从实验角度,我们表明RHLS在AUU的检测中提供了一种自由的绩效改进。特别是,在FA-FA-FA-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-T-B-T-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-</s>