Most real-world ecological dynamics, ranging from ecosystem dynamics to collective animal movement, are inherently stochastic in nature. Stochastic differential equations (SDEs) are a popular modelling framework to model dynamics with intrinsic randomness. Here, we focus on the inverse question: If one has empirically measured time-series data from some system of interest, is it possible to discover the SDE model that best describes the data. Here, we present PyDaddy (PYthon library for DAta Driven DYnamics), a toolbox to construct and analyze interpretable SDE models based on time-series data. We combine traditional approaches for data-driven SDE reconstruction with an equation learning approach, to derive symbolic equations governing the stochastic dynamics. The toolkit is presented as an open-source Python library, and consists of tools to construct and analyze SDEs. Functionality is included for visual examination of the stochastic structure of the data, guided extraction of the functional form of the SDE, and diagnosis and debugging of the underlying assumptions and the extracted model. Using simulated time-series datasets, exhibiting a wide range of dynamics, we show that PyDaddy is able to correctly identify underlying SDE models. We demonstrate the applicability of the toolkit to real-world data using a previously published movement data of a fish school. Starting from the time-series of the observed polarization of the school, pyDaddy readily discovers the SDE model governing the dynamics of group polarization. The model recovered by PyDaddy is consistent with the previous study. In summary, stochastic and noise-induced effects are central to the dynamics of many biological systems. In this context, we present an easy-to-use package to reconstruct SDEs from timeseries data.


翻译:从生态系统动态到集体动物运动,大多数真实世界生态动态本质上都是随机的。Stochastecal 差异方程式(SDEs)是一个流行的建模框架,可以以内在随机性模拟动态。在这里,我们侧重于反向问题:如果一个人从某种感兴趣的系统以经验方式测量了时间序列数据,那么有可能发现最能描述数据的SDE模型。在这里,我们介绍PyDaddy(Data Drewn Dynamics的PYthon图书馆),这是一个根据时间序列数据构建和分析可解释的 SDE 模型的工具箱。我们将数据驱动的SDE 应用性重建传统方法与方程式学习方法相结合,以生成关于Stochacistical动态的符号式方程式。工具包是作为公开源源的Python图书馆,由构建和分析SDEs的最佳工具构成。功能性包含对数据结构的直观检查,通过SDE的功能形式提取SDE的功能形式,以及对基础假设和提取模型的诊断和调试测的模型。我们利用了时间序列的SDread-deal dal drode dal 数据模型,展示了Sdiadeal deal dal demode drodemode drode drode drocude the sal decudy the sal deal decudeal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal deal decumental demodal decumental decude smad decumental decumental decumental decument.

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员