With the development of the Internet of Things(IoT) and Artificial Intelligence(AI) technologies, human activity recognition has enabled various applications, such as smart homes and assisted living. In this paper, we target a new healthcare application of human activity recognition, early mobility recognition for Intensive Care Unit(ICU) patients. Early mobility is essential for ICU patients who suffer from long-time immobilization. Our system includes accelerometer-based data collection from ICU patients and an AI model to recognize patients' early mobility. To improve the model accuracy and stability, we identify features that are insensitive to sensor orientations and propose a segment voting process that leverages a majority voting strategy to recognize each segment's activity. Our results show that our system improves model accuracy from 77.78\% to 81.86\% and reduces the model instability (standard deviation) from 16.69\% to 6.92\%, compared to the same AI model without our feature engineering and segment voting process.
翻译:随着Things(IoT)和人工智能(AI)技术的开发,人类活动的承认使各种应用得以应用,例如智能之家和辅助生活等。在本文件中,我们的目标是对人的活动识别进行新的保健应用,即对强化护理单位病人的早期行动识别。早期行动对于长期无法流动的伊斯兰护理单位病人至关重要。我们的系统包括从伊斯兰护理单位病人收集基于加速计的数据,以及用于确认病人早期流动性的AI模型。为了提高模型的准确性和稳定性,我们确定了对传感器方向不敏感的特征,并提议了一个部分投票程序,利用多数投票战略来确认每个部分的活动。我们的结果显示,我们的系统提高了模型的准确性,从77.78 ⁇ 提高到81.86 ⁇ ,并将模型的不稳定性(标准偏差)从16.69 ⁇ 降至6.92 ⁇ ,而没有我们的特征工程和部分投票程序,将同样的AI模型减少模型的不稳定性(标准偏差) 从16.69 ⁇ 到6.92 ⁇ 。