Rehabilitation robotics combined with video game technology provides a means of assisting in the rehabilitation of patients with neuromuscular disorders by performing various facilitation movements. The current work presents ReHabGame, a serious game using a fusion of implemented technologies that can be easily used by patients and therapists to assess and enhance sensorimotor performance and also increase the activities in the daily lives of patients. The game allows a player to control avatar movements through a Kinect Xbox, Myo armband and rudder foot pedal, and involves a series of reach-grasp-collect tasks whose difficulty levels are learnt by a fuzzy interface. The orientation, angular velocity, head and spine tilts and other data generated by the player are monitored and saved, whilst the task completion is calculated by solving an inverse kinematics algorithm which orientates the upper limb joints of the avatar. The different values in upper body quantities of movement provide fuzzy input from which crisp output is determined and used to generate an appropriate subsequent rehabilitation game level. The system can thus provide personalised, autonomously-learnt rehabilitation programmes for patients with neuromuscular disorders with superior predictions to guide the development of improved clinical protocols compared to traditional theraputic activities.


翻译:与视频游戏技术相结合的康复机器人提供了一种手段,帮助神经肌肉障碍患者康复,通过开展各种便利运动,进行各种协助运动;目前的工作是ReHabGame,这是一个使用患者和治疗师可以轻易地用来评估和增强感官性能并增加患者日常生活活动的应用技术的混合技术的严肃游戏,它使患者能够通过Kinect Xbox、 Myo 臂带和涡轮脚踏板来控制呼吸器运动,并涉及一系列通过烟雾界面学习困难程度的伸展-grasp-收集任务。对方向、角速度、头和脊椎倾斜以及播放器生成的其他数据进行监测和保存,而任务完成则通过解决反动动学算法来计算,这种算法可以调整血管上部的肢体连接。运动上层的不同值提供了模糊输入,从而确定了直径输出,并用于产生适当的随后康复游戏水平。因此,该系统可以提供个人化的、自主性、自主的悬浮式修复方案以及播放器产生的其他数据,从而对具有神经肌肉性血管发育障碍的病人进行更好的临床分析。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员