This paper investigates an integrated sensing and communication (ISAC) system with reconfigurable intelligent surface (RIS). Our simultaneous beam training and target sensing (SBTTS) scheme enables the base station to perform beam training with the user terminals (UTs) and the RIS, and simultaneously to sense the targets. Based on our findings, the energy of the echoes from the RIS is accumulated in the angle-delay domain while that from the targets is accumulated in the Doppler-delay domain. The SBTTS scheme can distinguish the RIS from the targets with the mixed echoes from the RIS and the targets. Then we propose a positioning and array orientation estimation (PAOE) scheme for both the line-of-sight channels and the non-line-of-sight channels based on the beam training results of SBTTS by developing a low-complexity two-dimensional fast search algorithm. Based on the SBTTS and PAOE schemes, we further compute the angle-of-arrival and angle-of-departure for the channels between the RIS and the UTs by exploiting the geometry relationship to accomplish the beam alignment of the ISAC system. Simulation results verify the effectiveness of the proposed schemes.
翻译:暂无翻译