Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that item-based CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.
翻译:许多合作过滤算法都以项目为基础,因为它们分析项目项目关系,以便产生项目相似性。最近,在自然语言处理领域的一些工作建议使用神经嵌入算法来学习潜在表达词。其中,称为Word2vec的GVG(SGNS)显示,它提供了各种语言任务的最新最新结果。在本文中,我们显示,基于项目的项目CF可以投放到神经字嵌入的框架之中。在SGNS的启发下,我们描述了一种方法,我们为基于项目CF命名了项目2vec,用于在潜空嵌入项目。这种方法可以推断项目项目的关系,即使用户信息不存在。我们提出了实验结果,以证明项目2vec方法的有效性,并表明它与SVD具有竞争力。