Many vehicles spend a significant amount of time in urban traffic congestion. Due to the evolution of autonomous cars, driver assistance systems, and in-vehicle entertainment, many vehicles have plentiful computational and communication capacity. How can we deploy data collection and processing tasks on these (slowly) moving vehicles to productively use any spare resources? To answer this question, we study the efficient placement of distributed services on a moving vehicle cluster. We present a macroscopic flow model for an intersection in Dublin, Ireland, using real vehicle density data. We show that such aggregate flows are highly predictable (even though the paths of individual vehicles are not known in advance), making it viable to deploy services harnessing vehicles' sensing capabilities. Our main contribution is a detailed mathematical specification for a task-based, distributed service placement model that scales according to the resource requirements and is robust to the changes caused by the mobility of the cluster. We formulate this as a constrained optimization problem, with the objective of minimizing overall processing and communication costs. Our results show that jointly scaling tasks and finding a mobility-aware, optimal placement results in reduced processing and communication costs compared to an autonomous vehicular edge computing-based na\"{i}ve solution.


翻译:许多车辆在城市交通拥堵中花费了大量时间。由于自治汽车、司机协助系统和车辆娱乐的演变,许多车辆具有充分的计算和通信能力。我们如何在这些(低度)移动车辆上部署数据收集和处理任务,以生产使用任何剩余资源?为了回答这个问题,我们研究了在移动车辆集群上有效安排分配服务的问题。我们用真正的车辆密度数据为在爱尔兰都柏林的交叉点提供了一个宏观流动模式。我们表明,这种总流量非常可预测(即使个人车辆的行进不为人所知),因此能够部署利用车辆的感知能力的服务。我们的主要贡献是根据资源需求,对基于任务的分配服务安置模式作出详细的数学规格说明,该模式根据任务、分布式服务安排模式的规模,对集群流动所带来的变化十分有力。我们将此设计成一个有限的优化问题,目的是尽量减少总体处理和通信成本。我们的结果表明,联合扩大任务的规模,并找到机动性、最佳的安置结果,与自主的视觉边缘计算机解决方案相比,在降低处理和通信成本方面产生最佳效果。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
106+阅读 · 2020年5月3日
【新书】Python编程基础,669页pdf
专知会员服务
192+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
0+阅读 · 2021年12月11日
Arxiv
45+阅读 · 2019年12月20日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员