LLM-based coding agents are increasingly common but still face challenges in context management, latency, reliability, reproducibility, and scalability. We present Agint, an agentic graph compiler, interpreter, and runtime that incrementally and hierarchically converts natural-language instructions into typed, effect-aware code DAGs. Agint introduces explicit type floors (text to data to spec to code) grounded in semantic graph transformations and a hybrid LLM and function-based JIT runtime. This enables dynamic graph refinement, reproducible and optimizable execution, speculative evaluation, and interoperability with existing developer tools. Agint's typed graph bindings improve reliability and allow concurrent composition of concurrent codebases by construction, supporting accelerated development with smaller and faster models, lower latency, efficient context utilization, and higher throughput. Hierarchical compilation allows scalable graph edits, while the graph structure supports reproducibility and efficient parallel generation. Agint provides a composable unix-style toolchain: dagify (DAG compiler), dagent (hybrid JIT runtime), schemagin (schema generator), and datagin (data transformer) for realtime, low-latency code and dataflow creation. Human developers and coding agents refine graphs through the Agint CLI, while non-technical users use Agint Flow GUI for visual editing, conversational refinement, and debugging to promote prototype agentic workflows to production code. This continuous co-creation model allows teams to prototype quickly, refine seamlessly, and deploy reliably, bridging natural language, compiler methods, and developer tooling to enable a new generation of composable, team-centric coding agents at scale.
翻译:基于大语言模型(LLM)的编码智能体日益普及,但在上下文管理、延迟、可靠性、可复现性和可扩展性方面仍面临挑战。本文提出Agint,一种代理式图编译器、解释器与运行时系统,能够以增量、分层的方式将自然语言指令转换为类型化、效应感知的代码有向无环图(DAG)。Agint引入了基于语义图变换的显式类型层级(从文本到数据、到规约、再到代码),以及混合LLM与函数式的即时编译(JIT)运行时。该系统支持动态图优化、可复现且可优化的执行、推测式求值,并能与现有开发工具互操作。Agint的类型化图绑定机制提升了可靠性,并通过构造实现并发代码库的并行组合,支持使用更小更快的模型进行加速开发,实现更低延迟、更高效的上下文利用和更高吞吐量。分层编译支持可扩展的图编辑,而图结构本身保障了可复现性与高效的并行生成。Agint提供了一套可组合的类Unix工具链:dagify(DAG编译器)、dagent(混合JIT运行时)、schemagin(模式生成器)和datagin(数据转换器),用于实时、低延迟的代码与数据流创建。人类开发者与编码智能体可通过Agint命令行界面精修图结构,非技术用户则可使用Agint Flow图形界面进行可视化编辑、对话式优化与调试,从而将原型级代理工作流提升至生产代码水平。这种持续协同创作模式使团队能够快速原型设计、无缝优化并可靠部署,桥接了自然语言、编译方法与开发工具,为新一代可组合、以团队为中心的大规模编码智能体提供了技术基础。