Histogram-based template fits are the main technique used for estimating parameters of high energy physics Monte Carlo generators. Parametrized neural network reweighting can be used to extend this fitting procedure to many dimensions and does not require binning. If the fit is to be performed using reconstructed data, then expensive detector simulations must be used for training the neural networks. We introduce a new two-level fitting approach that only requires one dataset with detector simulation and then a set of additional generation-level datasets without detector effects included. This Simulation-level fit based on Reweighting Generator-level events with Neural networks (SRGN) is demonstrated using simulated datasets for a variety of examples including a simple Gaussian random variable, parton shower tuning, and the top quark mass extraction.
翻译:直方图样板是用来估计高能物理蒙特卡洛发电机参数的主要技术。可使用神经网络的平衡加权来将这一安装程序扩展到多个层面,而不需要进行宾入。如果要使用重建的数据来进行安装,那么就必须使用昂贵的探测器模拟来培训神经网络。我们引入了一个新的双级安装方法,即只需要用检测器模拟来计算一个数据集,然后再用一组没有检测器效应的生成级数据集。根据神经网络(SRGN)的再加权发电机级事件来进行模拟,使用模拟数据集来演示这种模拟,用于各种例子,包括简单的高斯随机变量、部分淋浴调节和顶方形质量提取。