In this letter we propose a data-driven approach to optimizing the algebraic connectivity of a team of robots. While a considerable amount of research has been devoted to this problem, we lack a method that scales in a manner suitable for online applications for more than a handful of agents. To that end, we propose a supervised learning approach with a convolutional neural network (CNN) that learns to place communication agents from an expert that uses an optimization-based strategy. We demonstrate the performance of our CNN on canonical line and ring topologies, 105k randomly generated test cases, and larger teams not seen during training. We also show how our system can be applied to dynamic robot teams through a Unity-based simulation. After training, our system produces connected configurations over an order of magnitude faster than the optimization-based scheme for teams of 10-20 agents.
翻译:在这封信中,我们提出了优化机器人团队代数连通的数据驱动方法。虽然已经就这一问题进行了大量研究,但我们缺乏一种适合少数代理商在线应用的方法。为此,我们提议了一种监督性学习方法,即由使用优化战略的专家提供通信代理。我们展示了我们的CNN在卡通线和环形地形、105k随机生成的测试案例和在培训期间看不到的较大团队方面的表现。我们还展示了如何通过基于团结的模拟将我们的系统应用到动态机器人团队中。在培训之后,我们的系统生成的连接配置比10-20个代理商团队的优化计划快得多。