Consumer Virtual Reality (VR) has been widely used in various application areas, such as entertainment and medicine. In spite of the superb immersion experience, to enable high-quality VR on untethered mobile devices remains an extremely challenging task. The high bandwidth demands of VR streaming generally overburden a conventional wireless connection, which affects the user experience and in turn limits the usability of VR in practice. In this paper, we propose FoVR, attention-based hierarchical VR streaming through bandwidth-limited wireless networks. The design of FoVR stems from the insight that human's vision is hierarchical, so that different areas in the field of view (FoV) can be served with VR content of different qualities. By exploiting the gaze tracking capacity of the VR devices, FoVR is able to accurately predict the user's attention so that the streaming of hierarchical VR can be appropriately scheduled. In this way, FoVR significantly reduces the bandwidth cost and computing cost while keeping high quality of user experience. We implement FoVR on a commercial VR device and evaluate its performance in various scenarios. The experiment results show that FoVR reduces the bandwidth cost by 88.9% and 76.2%, respectively compared to the original VR streaming and the state-of-the-art approach.


翻译:消费者虚拟现实(VR)在娱乐和医药等各种应用领域被广泛使用。尽管有超强的沉浸经验,但使高品质的VR在未交热移动设备上仍是一项极具挑战性的任务。VR流的高带宽要求通常使常规无线连接负担过重,这影响到用户的经验,反过来又限制了VR的实际可用性。在本文中,我们提议FOVR通过带宽限制无线网络进行基于关注的层次VR流。FOVR的设计来源于人们的视野是等级的洞察,因此不同视野领域(FoV)的不同区域可以使用不同品质的VR内容。通过利用VR装置的凝视跟踪能力,FOR能够准确地预测用户的注意度,从而可以适当安排VR的流流。FOVR大幅降低带宽成本和计算成本,同时保持高质量的用户经验。我们通过商业VR设备实施FOVR,并在各种情景中评估其性能表现。实验结果分别通过利用VR的视觉跟踪能力,将FOVR的原位数降低了88-%和原始带宽度方法。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员