Neural machine translation inference procedures like beam search generate the most likely output under the model. This can exacerbate any demographic biases exhibited by the model. We focus on gender bias resulting from systematic errors in grammatical gender translation, which can lead to human referents being misrepresented or misgendered. Most approaches to this problem adjust the training data or the model. By contrast, we experiment with simply adjusting the inference procedure. We experiment with reranking nbest lists using gender features obtained automatically from the source sentence, and applying gender constraints while decoding to improve nbest list gender diversity. We find that a combination of these techniques allows large gains in WinoMT accuracy without requiring additional bilingual data or an additional NMT model.


翻译:光束搜索等神经机翻译推断程序最有可能产生模型下的产出。这可能会加剧模型显示的任何人口偏差。我们注重因语法性别翻译系统错误而产生的性别偏差,这可能导致人类参考人被歪曲或错误性别观念。大多数解决问题的方法都调整培训数据或模型。相比之下,我们尝试仅仅调整推理程序。我们尝试利用从源句中自动获得的性别特征来重新排列最佳名单,并运用性别限制来提高性别多样性。我们发现,这些技术的结合使得WinoMT的准确性大增,而不需要额外的双语数据或额外的NMT模型。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员