This paper introduces an intelligent water-saving irrigation system designed to address critical challenges in precision agriculture, such as inefficient water use and poor terrain adaptability. The system integrates advanced computer vision, robotic control, and real-time stabilization technologies via a multi-sensor fusion approach. A lightweight YOLO model, deployed on an embedded vision processor (K210), enables real-time plant container detection with over 96% accuracy under varying lighting conditions. A simplified hand-eye calibration algorithm-designed for 'handheld camera' robot arm configurations-ensures that the end effector can be precisely positioned, with a success rate exceeding 90%. The active leveling system, driven by the STM32F103ZET6 main control chip and JY901S inertial measurement data, can stabilize the irrigation platform on slopes up to 10 degrees, with a response time of 1.8 seconds. Experimental results across three simulated agricultural environments (standard greenhouse, hilly terrain, complex lighting) demonstrate a 30-50% reduction in water consumption compared to conventional flood irrigation, with water use efficiency exceeding 92% in all test cases.
翻译:本文介绍了一种智能节水灌溉系统,旨在解决精准农业中的关键挑战,如水资源利用效率低下和地形适应性差。该系统通过多传感器融合方法,集成了先进的计算机视觉、机器人控制和实时稳定技术。一个轻量级YOLO模型部署在嵌入式视觉处理器(K210)上,可在不同光照条件下实现实时植物容器检测,准确率超过96%。一种为“手持式摄像头”机械臂配置设计的简化手眼标定算法,确保了末端执行器能够被精确定位,成功率超过90%。由STM32F103ZET6主控芯片和JY901S惯性测量数据驱动的主动调平系统,可在坡度高达10度的斜坡上稳定灌溉平台,响应时间为1.8秒。在三种模拟农业环境(标准温室、丘陵地形、复杂光照)下的实验结果表明,与传统的漫灌相比,该系统可减少30-50%的用水量,在所有测试案例中水利用效率均超过92%。