We consider the Scale-Free Adversarial Multi-Armed Bandit (MAB) problem with unrestricted feedback delays. In contrast to the standard assumption that all losses are $[0,1]$-bounded, in our setting, losses can fall in a general bounded interval $[-L, L]$, unknown to the agent beforehand. Furthermore, the feedback of each arm pull can experience arbitrary delays. We propose a novel approach named Scale-Free Delayed INF (SFD-INF) for this novel setting, which combines a recent "convex combination trick" together with a novel doubling and skipping technique. We then present two instances of SFD-INF, each with carefully designed delay-adapted learning scales. The first one SFD-TINF uses $\frac 12$-Tsallis entropy regularizer and can achieve $\widetilde{\mathcal O}(\sqrt{K(D+T)}L)$ regret when the losses are non-negative, where $K$ is the number of actions, $T$ is the number of steps, and $D$ is the total feedback delay. This bound nearly matches the $\Omega((\sqrt{KT}+\sqrt{D\log K})L)$ lower-bound when regarding $K$ as a constant independent of $T$. The second one, SFD-LBINF, works for general scale-free losses and achieves a small-loss style adaptive regret bound $\widetilde{\mathcal O}(\sqrt{K\mathbb{E}[\tilde{\mathfrak L}_T^2]}+\sqrt{KDL})$, which falls to the $\widetilde{\mathcal O}(\sqrt{K(D+T)}L)$ regret in the worst case and is thus more general than SFD-TINF despite a more complicated analysis and several extra logarithmic dependencies. Moreover, both instances also outperform the existing algorithms for non-delayed (i.e., $D=0$) scale-free adversarial MAB problems, which can be of independent interest.


翻译:我们考虑的是无Astial Adversarial 多武装盗匪(MAB) 问题, 以及不受限制的反馈延迟。 与标准假设相比, 所有损失都是 $[0, 1美元, 在我们的设置中, 损失可能会在一般的受约束间隔 $[L, L], 代理方之前未知。 此外, 每个臂拉的反馈可能会经历任意的延误。 我们为这个新环境提出了一个名为 无限制延迟 INF (SFD) 的新办法, 它结合了最新的“ comx 组合技巧 ” 和新颖的翻番和跳的技巧。 然后我们展示了 SFD- INF 的两例, 每例都有精心设计的延迟适应的学习尺度 。 SFD- TINF 使用$\ framcle, 并可以实现全局的 Oqtral O} (sqraltial) 。 当损失是非内(K美元) 的动作数量时, 美元是最低的, 而 美元 AL_ 直立方的回。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员