Over the last few years, standardisation efforts are consolidating the role of the Routing Protocol for LowPower and Lossy Networks (RPL) as the standard routing protocol for IPv6 based Wireless Sensor Networks (WSNs). Although many core functionalities are well defined, others are left implementation dependent. Among them, the definition of an efficient link quality estimation (LQE) strategy is of paramount importance, as it influences significantly both the quality of the selected network routes and nodes' energy consumption. In this paper, we present RLProbe, a novel strategy for link quality monitoring in RPL, which accurately measures link quality with minimal overhead and energy waste. To achieve this goal, RLProbe leverages both synchronous and asynchronous monitoring schemes to maintain up-to-date information on link quality and to promptly react to sudden topology changes, e.g. due to mobility. Our solution relies on a reinforcement learning model to drive the monitoring procedures in order to minimise the overhead caused by active probing operations. The performance of the proposed solution is assessed by means of simulations and real experiments. Results demonstrated that RLProbe helps in effectively improving packet loss rates, allowing nodes to promptly react to link quality variations as well as to link failures due to node mobility.


翻译:过去几年来,标准化工作正在巩固低功率和损失网络运行协议(RPL)的作用,这是基于IPv6的无线传感器网络(WSNs)的标准路径协议。尽管许多核心功能定义明确,但其他功能仍取决于执行,其中高效连接质量估算(LQE)战略的定义至关重要,因为它对选定的网络路径的质量和节点能源消耗都产生重大影响。本文介绍了RLProbe,这是将低功率和损失网络质量监测(RPL)连接起来的新颖战略,它精确地将质量与最低间接费用和能源浪费联系起来。为实现这一目标,RLProbe利用同步和不同步的监测系统,以保持关于链接质量的最新信息,并迅速应对突发的地形变化,例如由于流动性等。我们的解决办法依靠强化学习模式驱动监测程序,以最大限度地减少积极探测作业造成的间接费用。拟议解决方案的绩效是通过模拟和真实的实验手段评估如何将质量监测质量与最低管理费和能源浪费联系起来。为了实现这一目标,RLProbe利用同步和不同步的监控机制来有效改进质量变化,因为RLBe 使质量变化与质量变化成为有效的链接。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2019年3月28日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员