项目名称: 基于纳米机械振子耦合系统的全光质谱仪的研究

项目编号: No.11274230

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 朱卡的

作者单位: 上海交通大学

项目金额: 78万元

中文摘要: 微观粒子(如生物分子、中性原子等)质量的测量一直是国际上关注的课题。当这些粒子落到具有特殊结构并通有电流的纳米介质上(如纳米机械振子)时,这些纳米介质的固有振动频率就会发生变化,通过测量频率的变化量,人们可以测得落入的粒子质量。但是,由于电路引起的热效应、能量损失、频率受限等因素,电学的测量方法往往存在很大的误差,严重影响微观粒子质量测量的精确度。本项目将提出一种新的全光学的量子测量方法,基于纳米机械振子耦合系统或纳米腔光机械系统,在双光控制的条件下,利用光学方法精确测出振子频率的变化量从而得到微观粒子质量。此方法不涉及任何电学的参量,使得测量灵敏度比电学方法高出几个数量级。本项目拟深入系统地研究基于这类纳米机械振子耦合系统的全光质谱仪,并进一步推广到其它灵敏度更高且更有应用前景的纳米机械振子系统如纳米碳管和石墨烯,为今后的实验研究提供有力的理论指导和可靠的物理基础。

中文关键词: 光学质谱仪;纳米机械振子;量子光学效应;量子点;激子

英文摘要: The mass of molecule is traditionally measured using mass spectrometry, in which the molecules have to be ionized in the first instance and the charge on the ionized molecule needs to be known before their mass can be extracted . But not all molecules are easy to ionize, and uncertainty about the charge of the molecules lead to uncertainty in the mass values reported. In recent years, the mass spectrometries based on NEMS have been studied by many research groups. These mass spectrometries rely on a resonant frequency-shift due to an accreted mass and do not need the process of molecules' ionization.In conventional electrical detection, the nanomechanical resonators should be suspended between two electrodes above a conducting plate, while a voltage applies through them. However, most of these electrical approaches requires the device to be operated at high magnetic fields and at low temperatures. As motivated by optical pump-probe technique researches, we shall propose a novel optical mass sensing method based on some coupled nanomechanical resonator systems. This mass sensor proposed here is so far the first all-optical measurement without any electrical parameters. In the presence of a strong pump field, the accreted mass landing on the resonator can be weighed easily and precisely due to the frequency-shift

英文关键词: Optical mass sensing;nanomechanical resonator;quantum optical effects;quantum dot;exciton

成为VIP会员查看完整内容
0

相关内容

【WWW2022】交互式超图神经网络用于个性化产品搜索
专知会员服务
12+阅读 · 2022年2月13日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
35+阅读 · 2021年8月1日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
136+阅读 · 2021年2月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
【WWW2022】交互式超图神经网络用于个性化产品搜索
专知会员服务
12+阅读 · 2022年2月13日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
35+阅读 · 2021年8月1日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
136+阅读 · 2021年2月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员