项目名称: 高灵敏度电化学单核苷酸多态性分析新方法研究及其应用

项目编号: No.21475072

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 高分子科学

项目作者: 刘树峰

作者单位: 青岛科技大学

项目金额: 90万元

中文摘要: 项目拟开展高灵敏度电化学单核苷酸多态性(SNPs)分析新方法及应用研究。基于工具酶联用技术,发展SNPs基因分型的高选择性识别新方法。提出核酸酶辅助自催化靶标循环、枝状滚环扩增及枝状杂交链式反应新方法,建立SNPs识别信号转换与级联扩增新策略。基于表面引发原子转移自由基聚合物生长技术,设计新型纳米生物电化学信号探针体系,构建性能优异的电化学SNPs传感检测平台,旨在实现复杂生物体系中与重大疾病相关生物标志物SNPs的快速、稳定、高通量、高灵敏、高选择性分析检测。探索不同SNPs及其表达水平与重大疾病发生、发展之间的关系,以期为重大疾病如癌症的早期诊断提供新方法和新技术,具有重要的科学意义。

中文关键词: 单核苷酸多态性;电分析化学;生物传感器;信号放大;生物探针

英文摘要: The current project is aimed at the development of new electroanalytical methods for highly sensitive detection of single nucleotide polymorphisms (SNPs). The highly selective discrimination strategy toward SNPs genotypes are developed based on the combination of different tool enzymes. The new methods of nuclease-assisted autocatalytic target recycling, dendritic rolling circle replication and dendritic hybridization chain reaction are proposed and used for the SNPs signal transformation and cascade amplification. New bionanoprobe is designed based on surface initiated atom transfer radical polymerization (ATRP) technique and used for the construction of electrochemical SNPs sensing platform with excellent performances. Then, the rapid, high throughput, high sensitive and high selective detection toward the SNPs biomarkers related to the serious diseases for example cancer in complex biological samples is achieved. The dependence of serious diseases on the SNPs genotypes and concentration is investigated in detail. This project would provide some new methods and techniques for the early diagnosis of serious diseases. Some innovative research results are also expected with the execution of current project.

英文关键词: Single nucleotide polymorphisms;Electroanalytical chemistry;Biosensor;Signal amplification;Bioprobe

成为VIP会员查看完整内容
0

相关内容

专知会员服务
29+阅读 · 2021年8月27日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
专知会员服务
21+阅读 · 2021年5月20日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
48+阅读 · 2020年12月13日
高效医疗图像分析的统一表示
专知会员服务
35+阅读 · 2020年6月23日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
「图分类研究」最新2022综述
专知
5+阅读 · 2022年2月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
Arxiv
57+阅读 · 2021年5月3日
小贴士
相关VIP内容
专知会员服务
29+阅读 · 2021年8月27日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
专知会员服务
21+阅读 · 2021年5月20日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
48+阅读 · 2020年12月13日
高效医疗图像分析的统一表示
专知会员服务
35+阅读 · 2020年6月23日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关资讯
「图分类研究」最新2022综述
专知
5+阅读 · 2022年2月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员