项目名称: 强制对流作用下CNTs-TiC复合增强涂层的制备及其凝固组织控制研究

项目编号: No.51202143

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 吴钱林

作者单位: 上海海事大学

项目金额: 25万元

中文摘要: 本项目基于材料表面改性及复合的思路,采用在高温碳气氛中铁基材料表面自生碳纳米管作为碳源和增强相,借助激光熔池的强制对流和快速凝固的特点,在人工神经网络模型的指导下优化激光工艺参数,协同和控制反应稳态进行,从而实现涂层中CNTs-TiC复合增强相的原位合成和均匀化分布。 本项目通过对强制对流作用下原位合成反应与凝固过程交互作用的研究,揭示熔池中增强相的非平衡凝固行为、相的形成、组织演变规律及界面微观结构特征;对凝固组织形状因子的影响因素以及激光工艺参数与形状因子之间的关系进行研究,探索控制凝固组织的最佳工艺;结合实验性能数据,建立材料性能与显微组织结构间的构效关系;在通过腐蚀、磨损等实验基础上,结合现代材料分析测试先进技术,揭示复合材料的强化机制。 本研究将为铁基表面复合材料的设计、开发及应用提供指导。

中文关键词: 强制对流;原位合成;碳纳米管;凝固组织;铁基表面复合材料

英文摘要: This project is based on the way of material surface modification and composite, using carbon nanotubes synthesized on iron surface in carbonaceous atmospheres at high temperatures as carbon source and reinforced phase. With the help of the forced convection and rapid solidification of laser melt pool, the CNTs-TiC composite reinforced phase will be prepared in situ and distributed uniformly in the coating by the stabilizing control of the reactions where the optimum processing parameters are determined using an artificial neural network model. The non-equilibrium solidification behaviour, microstructure evolution and formation, and interfacial microstructure of the reinforced phase will be examined by the study of interactions between in situ reaction and solidification process. The optimization technology for controlling solidification structure will be developed based on the solidification structural shape factor and the relationship between the laser processing parameters and the shape factor. Combining the performance data, the relationship between the structure and properties of the composite will be revealed. The reinforcing and toughening mechanisms of composite are investigated by using advanced materials analysis techniques and the experiment results from corrosion and wear tests. The aim of this work

英文关键词: Forced convection;in situ synthesis;carbon nanotubes;solidification structure;Fe-based surface composite

成为VIP会员查看完整内容
0

相关内容

前沿综述:集体智能与深度学习的交叉进展
专知会员服务
72+阅读 · 2022年2月6日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
2021 CSIG机器视觉与智能研讨会成功召开
CSIG机器视觉专委会
2+阅读 · 2021年11月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
16+阅读 · 2020年5月20日
小贴士
相关主题
相关VIP内容
前沿综述:集体智能与深度学习的交叉进展
专知会员服务
72+阅读 · 2022年2月6日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员