项目名称: 提高激光诱导等离子光谱技术的煤质成分测量精度研究

项目编号: No.51276100

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 能源与动力工程

项目作者: 王哲

作者单位: 清华大学

项目金额: 80万元

中文摘要: 我国亟需发展煤质在线测量技术以提高燃煤效率和安全性。激光诱导击穿光谱技术(LIBS)以快速测量、安全、低运行成本等特点成为最有可能实现煤质在线测量的商业应用技术之一。本研究旨在解决实现基于LIBS煤质在线测量的关键问题:即LIBS煤炭成分的精确测量。内容紧紧围绕解决目前LIBS定量测量的两大瓶颈问题(测量可重复度和精度较低)来展开,主要包括:1)研究利用等离子体与空间限制体之间的相互作用机理、激光分光对等离子体信号增强机理从硬件设置角度调制等离子体,从而提高测量可重复度;2)研究利用激光诱导等离子体本身的特征参数(电子密度、等离子体温度、总粒子数密度)的光谱标准化在煤炭成分测量中的应用;3)研究结合传统定标模型和统计学建模方法的主导因素偏最小二乘(PLS)方法和光谱标准化方法在煤质测量中的联合应用。4)基于LIBS的煤炭成分测量特殊性研究。

中文关键词: LIBS;煤质分析;空间限制;光谱标准化;主导因素PLS

英文摘要: To improve coal combustion efficiency and safty, it is of importance to develop a on-line coal analysis technology especially for China. Laser induced-breakdown spectroscopy (LIBS) is one of the most potential solution due to its fast measurement, safety, and lost operational cost. The main purpose of the project is to solve the two bottleneck problems for coal online measurement using LIBS: to reduce measurement uncertainty and to improve accuracy to coal analysis standard. The reseach includes: 1)investigatation of the mechanism of interaction among laser,confinement reflected shockwave, and plamsm,the mechanism of two or more simulataneous laser shots to plasm property, mechanism of plasma tune to reduce measurement uncertainty; 2)application of plasma characteristics based spetrum standization method to coal to reduce measurement uncertainty; 3)study of combining the above methods with the dominant factor based partial least square (PLS) model for coal application; 4)investigation of the specialty of LIBS coal application.

英文关键词: LIBS;Coal Analysis;Spatial Confinement;Spectrum Standardization;Dominant Factor Based PLS

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
知识图谱研究现状及军事应用
专知会员服务
192+阅读 · 2022年4月8日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
23+阅读 · 2021年3月18日
专知会员服务
133+阅读 · 2021年2月17日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
立体匹配技术简介
计算机视觉life
27+阅读 · 2019年4月22日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
小贴士
相关主题
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
知识图谱研究现状及军事应用
专知会员服务
192+阅读 · 2022年4月8日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
23+阅读 · 2021年3月18日
专知会员服务
133+阅读 · 2021年2月17日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员