项目名称: 中间带掺杂中的Mott转变及载流子驰豫动力学的实验研究

项目编号: No.61274093

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 杨春雷

作者单位: 中国科学院深圳先进技术研究院

项目金额: 80万元

中文摘要: 基于中间带材料的第三代光伏器件近年引起了学术界的巨大关注,由于它对太阳能光谱全波段的高效利用,使单结电池突破Shockley-Queisser理论效率极限(31%)成为了可能。但国际上中间带材料的实验工作刚刚起步,器件效率仍然偏低。本课题将从中间带材料中大家普遍关心的非辐射复合和载流子寿命恢复问题入手,围绕中间带材料和器件中一系列基础性物理问题,拟重点开展以下研究工作:1)探索在化合物半导体中通过深中心掺杂实现Mott转变的实验方案;2)研究中间带材料中金属-绝缘体转变对非辐射复合的影响,探寻载流子寿命恢复的机制,为中间带电池的发展提供更坚实的理论基石;3) 寻求导带和中间带之间准费米能级劈裂的确切实验证据,为中间带光伏器件的工作原理可行性补上关键的一环;4) 构建器件模型和优化器件结构,制作出基于中间带材料的光伏电池原型器件,力争成功演示中间带的效应和优势。

中文关键词: 中间带;金属绝缘体转变;非辐射复合;载流子寿命;费米能级劈裂

英文摘要: Intermediate band based 3rd generation photovoltaic devices have drawn great attention in the past years. Because of its good harvesting of the solar energy in a wide spectrum,it makes the efficiency of single junction solar cell be possilbe to break the Shockley-Queisser limit which is 31%. But the present efficiency of the intermediate band solar cells are still very low, considering of its infant period. We are interested in the non-radiative recombination and carrier lifetime recovery in this system. Our research work will focus on some fundamental physics in the intermediate band materials and devices as follows. 1) We will try to achieve Mott transition in compound semiconductors by doping with deep centers, which will prepare materials suitable for interband solar cells. 2) We will study the influence of metal-insulator transistion on the non-radiative recombination, trying to find the mechanism for carrier lifetime recovery. This will help to solidify the theoretical basis for the working principle of intermediate band solar cells. 3) We will try to search afformatory experimental evidence for the splitting of quasi-Fermi levels between conduction band and intermediate band, which gives the missing link towards developing a working IB photovoltaic device. 4)After careful modelling and designning the devi

英文关键词: Intermediate band;Metal-insulator transition;Non-radiative recombination;Carrier lifetime;Fermi-level splitting

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
【2020新书】软件和人工智能项目中的设计思维,157页pdf
专知会员服务
118+阅读 · 2020年8月30日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
16+阅读 · 2018年2月7日
小贴士
相关VIP内容
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
智源发布!《人工智能的认知神经基础白皮书》,55页pdf
【2020新书】软件和人工智能项目中的设计思维,157页pdf
专知会员服务
118+阅读 · 2020年8月30日
相关资讯
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月17日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
16+阅读 · 2018年2月7日
微信扫码咨询专知VIP会员