项目名称: 取向碳纳米管纤维力学增强及微结构/力学性能关系研究
项目编号: No.11472291
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 吕卫帮
作者单位: 中国科学院苏州纳米技术与纳米仿生研究所
项目金额: 86万元
中文摘要: 近年来,取向碳纳米管纤维的成功制备为碳纳米管在高性能复合材料中的应用带来了希望。目前,取向碳纳米管纤维的力学性能和传统的增强纤维(如碳纤维,玻璃纤维,芳纶纤维等)相比仍较低,而且远低于碳纳米管本身的力学性能。另外,现有的实验手段仍难以揭示取向碳纳米管纤维的微结构/力学性能关系,制约了人们对这一新材料力学性能的进一步优化。因此,本课题将通过牵伸和致密化取向碳纳米管纤维和改善碳纳米管/聚合物之间界面两种方法,来增强取向碳纳米管纤维内碳管之间力学性能的传递效率,提高取向碳纳米管纤维的力学性能。同时,我们将利用计算模拟手段研究取向碳纳米管纤维在载荷作用下的力学响应,探讨其微结构/力学性能关系,以及聚合物增强碳纳米管纤维的增强机理。本课题将为实验研制高性能取向碳纳米管纤维提供理论指导,推动我国轻质、高性能、多功能复合材料的发展。
中文关键词: 碳纳米管;纳米纤维;力学性能;优化设计;分子模拟
英文摘要: Recently, the fabrication of aligned carbon nanotube fibers (aligned CNT fibers) has opened the door for the real application of CNTs in high performance composites. However, the mechanical properties of the aligned CNT fibers are currently inferior to these of commercial high performance fibers, such as carbon fibers, glass fibers, aromatic fibers and so on, and fall far short of the mechanical properties of individual CNTs. On the other hand, the existing experimental tools still can't be applied to reveal the structure/property relations of aligned CNT fibers, which greatly hinds the optimization of the fiber mechanical properties. This research project aims to address these issues through both experimental and modeling efforts. To increase the fiber strength, the intertube load transfer efficiency in the aligned CNT fibers will be enhanced through stretching and densifying the fibers as well as improving the inteactions between CNT and polymers in the fibers. Meanwhile, large scale computational simulations will be performed to study the structural evolutions of aligned CNT fibers under loading, and to investigate their microstructure/mechanical property relations, as well as to understand the mechanism of aligned CNT fiber strengthening by polymer infiltation. This study will provide theoretical guidance for developing high performance aligned CNT fibers, and propel the development of light-weight, high performance, and multifunctional composites in China.
英文关键词: carbon nanotube;nanofibers;mechanical properties;optimization;molecular modeling