项目名称: 基于压缩感知与重采样技术的NMR噪声抑制新方法

项目编号: No.21475146

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 蒋滨

作者单位: 中国科学院武汉物理与数学研究所

项目金额: 90万元

中文摘要: 发展高灵敏检测方法是分析化学的永恒主题之一,提高信号强度和降低噪声水平是增强灵敏度的根本途径。在核磁共振波谱(NMR)分析中,通常采用高磁场强度的谱仪或复杂的脉冲实验方法来提高信号强度,通过使用超低温探头来降低噪声水平,但这无疑会提高实验成本或增加实验难度。相较而言,利用数据后处理方法辨识和抑制噪声,是提高信噪比的一种更为经济的途径。我们前期发展了基于统计学中重采样原理、能够同时抑制NMR谱中噪声/伪峰的数据后处理方法,并获得初步验证。以此为基础,本项目拟进一步引入压缩感知技术,将其与重采样方法相结合,发展基于数据后处理的新型噪声抑制方法,开发可直接用于不同厂家NMR谱仪/工作站的模块化普适性数据处理软件,并将其应用到快速多维生物NMR研究(特别是低可溶性蛋白质结构的NMR研究)中,以期提高NMR谱图质量,加快蛋白质结构解析效率。本成果预期也适用于其它基于傅立叶变换的谱学数据处理。

中文关键词: 核磁共振;数据处理;噪声抑制;压缩感知;重采样

英文摘要: Developing high sensitive measurement method is an everlasting topic in analytical chemistry. The essential approach of sensitivity enhancement is enhancing signal, or suppressing noise. In nuclear magnetic resonance spectroscopy (NMR), it is usual to enhance signal by utilizing high field magnitude spectrometer or complicated pulse sequences, and to suppress noise by equiping cryogenic probe, which consequently increases experimental cost and difficulty. By comparison, data post-processing is more cost-effective, and has wider developing prospective. Previously, we proposed a data processing method based on statistic resampling principle to suppress noise and artifact in NMR spectra, which has been verified. Starting from the above idea, this project will introduce compressed sensing, and combine it with resampling, to develop novel noise suppression methods. The modular general data processing software package which is capalbe to deal with NMR data in typical manufactures'spectrometers or workstations also will be developed. All the developed new methods will be applied in fast multidimensional biological NMR study, especially the NMR structure study of low soluble protein, to increase NMR spectral equality and elevate the efficiency of resolving protein structure. The project result also may be applicable to data processing of other spectroscopies base on Fourier transform.

英文关键词: NNR;Data processing;Noise suppression;Compressed sensing;Resampling

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
36+阅读 · 2021年4月23日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
107+阅读 · 2020年5月21日
基于Iceberg的大规模数据分析优化加速实践
【牛津大学】多级蒙特卡洛方法,70页pdf
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
python代码实现图片噪声去除
凡人机器学习
13+阅读 · 2018年5月18日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
36+阅读 · 2021年4月23日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
专知会员服务
107+阅读 · 2020年5月21日
相关资讯
基于Iceberg的大规模数据分析优化加速实践
【牛津大学】多级蒙特卡洛方法,70页pdf
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
python代码实现图片噪声去除
凡人机器学习
13+阅读 · 2018年5月18日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员