项目名称: 微通道中基于不互溶液-液微流体界面可控传输的定域反应微连接机制研究

项目编号: No.51205082

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 李宇杰

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 微流控器件与系统中,电互连通常需在流体微通道内制备,互连线尺度和定位精度多在纳米量级,同时互连的实现方式和过程必须考虑微通道中流体的输运、连接与封装,传统微连接原理和方法在此难以适用。微连接原理与技术的滞后已成为先进微流控系统集成制造的瓶颈。本项目从微流体本身的特点出发,提出利用不互溶两相微流体界面处的定域传输和反应在微通道中实现低温原位纳米互连的微连接新原理,主要研究内容包括:不互溶液-液两相微流体间界面的形成与演变;溶质的选择溶解性及界面处可控溶解界面层的形成规律;界面尺寸效应对界面处传质和反应过程的影响。本项目采用计算模拟和实验研究相结合的方式,确定不互溶微流体界面处动量传输、质量传输和化学反应的控制因素,最终利用界面处的定域传输和反应在实际微通道中预定位置分别制备Ag、Cu和Ni的纳米互连线,为解决微流控系统的微连接问题提供新的方向和相应的理论依据。

中文关键词: 电互连;液-液不互溶流体;界面反应;微通道;铜纳米材料

英文摘要: The electrical interconnection for microfluidic devices and systems are usually fabricated directly inside the micro-channels. Mostly nano-sized interconnection wires are required. The transport, connection, and packaging of the fluids in the micro-channels have to be taken into account during the electrical interconnection processes. All these difficulties make it impossible for traditional microjoining principles and processes to be adopted for microfluidics. The lagging of the development of microjoining principles and techniques has become the bottle-neck for the integrated manufacturing of advanced microfluidic systems. In this work, a new mechanism of microjoining based on the controlled transport and reaction processes on the interface between immiscible two-phase microfluidic liquids is presented for making nano-interconnection wires inside the micro-channels at low temperature. The following points are the main interests: the formation and development of the interface between immiscible two-phase microfluidic liquids; the selective solution of the solutes and the formation of the controlled solution interface layer; the size-effect of the interface on the local transport and reaction processes. Both computer simulation and experiments will be made to determine the controlling factors for the momentum tr

英文关键词: Electrical interconnections;Immiscible liquid-liquid fluid flow;Interface reactions;Microchannels;copper nano-materials

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
27+阅读 · 2022年4月13日
计算体系架构研究综述与思考
专知会员服务
67+阅读 · 2022年3月21日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
【博士论文】集群系统中的网络流调度
专知会员服务
45+阅读 · 2021年12月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
32+阅读 · 2020年12月14日
【CIKM2020】利用自注意力网络使搜索结果多样化
专知会员服务
13+阅读 · 2020年11月6日
专知会员服务
21+阅读 · 2020年9月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
CVPR 2018 |“寻找”极小人脸
极市平台
14+阅读 · 2018年7月11日
卷积神经网络的最佳解释!
专知
12+阅读 · 2018年5月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Dialog Inpainting: Turning Documents into Dialogs
Arxiv
0+阅读 · 2022年5月18日
小贴士
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
27+阅读 · 2022年4月13日
计算体系架构研究综述与思考
专知会员服务
67+阅读 · 2022年3月21日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
【博士论文】集群系统中的网络流调度
专知会员服务
45+阅读 · 2021年12月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
32+阅读 · 2020年12月14日
【CIKM2020】利用自注意力网络使搜索结果多样化
专知会员服务
13+阅读 · 2020年11月6日
专知会员服务
21+阅读 · 2020年9月11日
相关资讯
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
CVPR 2018 |“寻找”极小人脸
极市平台
14+阅读 · 2018年7月11日
卷积神经网络的最佳解释!
专知
12+阅读 · 2018年5月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员