搜索结果多样化的目标是使得检索得到的结果能够尽量覆盖用户提出问题的所有子话题。已有的多样化排序方法通常基于贪心选择(Greedy Selection)过程,独立地将每一个候选文档与已选中的文档序列进行比较,选择每一个排序位置的最佳文档,生成最后的文档排序。而相关研究证明由于各候选文档的边际信息收益并非彼此独立,贪心选择得到的各个局部最优解将难以导向全局最佳排序。本文介绍了一种基于自注意力网络(Self-Attention Network)的方法,可以同步地衡量全体候选文档间的关系,以及候选文档对不同用户意图的覆盖程度,有效地克服原有方法受限于贪心选择过程的局限性,并在TRECWebTrack09-12数据集上获得更好的性能。

https://dl.acm.org/doi/abs/10.1145/3340531.3411914

成为VIP会员查看完整内容
12

相关内容

利用注意力机制来“动态”地生成不同连接的权重,这就是自注意力模型(Self-Attention Model). 注意力机制模仿了生物观察行为的内部过程,即一种将内部经验和外部感觉对齐从而增加部分区域的观察精细度的机制。注意力机制可以快速提取稀疏数据的重要特征,因而被广泛用于自然语言处理任务,特别是机器翻译。而自注意力机制是注意力机制的改进,其减少了对外部信息的依赖,更擅长捕捉数据或特征的内部相关性
【KDD2020】 解决基于图神经网络的会话推荐中的信息损失
专知会员服务
31+阅读 · 2020年10月29日
【CIKM2020】学习个性化网络搜索会话
专知会员服务
14+阅读 · 2020年9月20日
专知会员服务
20+阅读 · 2020年9月11日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
33+阅读 · 2020年9月9日
【CIKM2020-阿里】在线序列广告的用户隐藏状态推断
专知会员服务
24+阅读 · 2020年9月5日
【SIGIR 2020】 基于协同注意力机制的知识增强推荐模型
专知会员服务
89+阅读 · 2020年7月23日
CIKM2020 | 最新9篇推荐系统相关论文
机器学习与推荐算法
12+阅读 · 2020年8月20日
论文浅尝 | 利用问题生成提升知识图谱问答
开放知识图谱
20+阅读 · 2019年11月5日
论文浅尝 | 基于复杂查询图编码的知识库问答
开放知识图谱
17+阅读 · 2019年7月22日
利用神经网络进行序列到序列转换的学习
AI研习社
12+阅读 · 2019年4月26日
论文浅尝 | 基于平行新闻的Bootstrapping关系抽取
开放知识图谱
13+阅读 · 2019年3月22日
神经网络架构搜索(NAS)综述 | 附AutoML资料推荐
赛尔推荐 | 第12期
哈工大SCIR
4+阅读 · 2018年5月2日
Arxiv
0+阅读 · 2020年12月15日
Arxiv
0+阅读 · 2020年12月14日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
4+阅读 · 2018年5月4日
VIP会员
相关VIP内容
【KDD2020】 解决基于图神经网络的会话推荐中的信息损失
专知会员服务
31+阅读 · 2020年10月29日
【CIKM2020】学习个性化网络搜索会话
专知会员服务
14+阅读 · 2020年9月20日
专知会员服务
20+阅读 · 2020年9月11日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
33+阅读 · 2020年9月9日
【CIKM2020-阿里】在线序列广告的用户隐藏状态推断
专知会员服务
24+阅读 · 2020年9月5日
【SIGIR 2020】 基于协同注意力机制的知识增强推荐模型
专知会员服务
89+阅读 · 2020年7月23日
相关资讯
CIKM2020 | 最新9篇推荐系统相关论文
机器学习与推荐算法
12+阅读 · 2020年8月20日
论文浅尝 | 利用问题生成提升知识图谱问答
开放知识图谱
20+阅读 · 2019年11月5日
论文浅尝 | 基于复杂查询图编码的知识库问答
开放知识图谱
17+阅读 · 2019年7月22日
利用神经网络进行序列到序列转换的学习
AI研习社
12+阅读 · 2019年4月26日
论文浅尝 | 基于平行新闻的Bootstrapping关系抽取
开放知识图谱
13+阅读 · 2019年3月22日
神经网络架构搜索(NAS)综述 | 附AutoML资料推荐
赛尔推荐 | 第12期
哈工大SCIR
4+阅读 · 2018年5月2日
微信扫码咨询专知VIP会员