项目名称: 蓝宝石光学腔体选择性激光刻蚀技术的研究

项目编号: No.51305162

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 刘强

作者单位: 吉林大学

项目金额: 25万元

中文摘要: 蓝宝石光学腔体因其优异的材料特性和紧凑的光学结构,在生化分析、生命科学和生物传感等方面具有不可替代的优势。针对目前加工精度难以保证、表面质量差、加工效率不高等问题,本项目利用飞秒激光照射后蓝宝石相变区和非相变区存在的高腐蚀速率比,分别从增大激光诱导相变区域和提高相变区域腐蚀速率方面来提高加工效率,提出可变式多焦点激光扫描技术;研究温度对激光照射后蓝宝石样件的腐蚀规律;研究超声化学腐蚀和超声磨粒抛光技术组合方案来获得超光滑蓝宝石腔体内表面;并提出高温腐蚀和超声腐蚀相结合的新方法,来减少工艺过程;建立误差分析和补偿模型,研究具有误差补偿效果的激光扫描路径。本项目的研究成果将促进高性能腔体类光学元件的工程化制造和应用,为复杂精密光学零件的加工和相关光学系统的研制提供理论指导和技术支持。

中文关键词: 蓝宝石;选择性激光刻蚀;表面改性;超声水合抛光;

英文摘要: Because of the excellent material characteristics and compact optical texture, sapphire optical cavity has the incomparable advantages in the fields of biochemical analysis, life science, and bio-sensing and so on. However, the existing sapphire optical cavities have the problems of low machining precision, poor surface quality, and low machining efficiency. Take the advantage of high etching ratio between the modified and unmodified material in sapphire, this project improves the machining efficiency by increasing the laser induced modified region and improving the etching rate. Variable multiple-focuses femtosecond laser scanning technology is proposed. The project aims to study the efficiency of temperature to etching rat of sapphire. Ultrasonic chemical etch technology combined with ultrasonic abrasive polishing technology are proposed to obtain the ultra-smooth cavity surface. The processing time is further shorted by combining the high temperature chemical etch technology and ultrasonic chemical etch technology. The error model is given to compensate the machining error of sapphire cavity in laser scanning trajectory. The project will enable the high performance optical cavity elements to implement engineering fabrication and application, provide theoretical foundation and technical support for fabrication

英文关键词: Sapphire;Selective laser etching;Surface modification;Ultrasonic hydration polishing method;

成为VIP会员查看完整内容
0

相关内容

【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
33+阅读 · 2022年3月13日
专知会员服务
20+阅读 · 2021年9月14日
专知会员服务
88+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月25日
专知会员服务
33+阅读 · 2021年5月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
32+阅读 · 2021年3月8日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
15+阅读 · 2018年6月23日
小贴士
相关VIP内容
【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
33+阅读 · 2022年3月13日
专知会员服务
20+阅读 · 2021年9月14日
专知会员服务
88+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月25日
专知会员服务
33+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
32+阅读 · 2021年3月8日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
15+阅读 · 2018年6月23日
微信扫码咨询专知VIP会员