项目名称: 氧化物质子导体薄膜及其在低电压无结薄膜晶体管中的应用

项目编号: No.51302276

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张洪亮

作者单位: 中国科学院宁波材料技术与工程研究所

项目金额: 25万元

中文摘要: 双电层薄膜晶体管(EDLT)由于在栅介质和沟道的界面电容大和工作电压低被认为是可用于便携式传感器等领域的理想器件。然而,EDLT通常都采用有机材料,从而降低了器件的场效应迁移率和稳定性。针对这一问题,本项目拟采用Al2O3和SiO2质子导体膜作为栅介质,并采用铟锌氧(IZO)或铟锡氧(ITO)膜作为源极、漏极和沟道,制备新型工艺相对简单平面型无结(JL) EDLT。研究Al2O3和SiO2纳米颗粒膜的质子导电特性和EDL电容及其湿度、温度及其(H+、Li+等)表面修饰后对其的影响,揭示质子导体/沟道界面极化机理,建立氧化物质子导体极化机理的物理模型。期望获得工作电压低于1.5 V,电流开关比大于10^7,场效应迁移率大于40 cm^2/Vos的JL EDLT。对氧化物半导体沟道载流子的调制作用进行准确建模。本项目将为便携式化学、生物和湿度等传感器提供必要的实验依据和器件基础。

中文关键词: 氧化物质子导体薄膜;无结;双电层;低电压薄膜晶体管;

英文摘要: Electric-Double-Layer thin-film transistors (EDLT) are regarded as ideal devices for potential portable sensors because of large EDL capacitance at the dielectric/semiconductor interface and low-voltage operation. In general, EDLT were fabricated using organic proton conductors and organic semiconductors. However, such organic materials usually show a limited chemical stability and durability as well as a low field-effect mobility. To avoid these disadvantages, a novel type of field-effect device, planar junctionless (JL) oxide-based EDLT with relatively simple process will be fabricated using nanogranular Al2O3 and SiO2 proton conducting films as gate dielectrics, and transparent conductive indium-zinc-oxide (IZO) and indium-tin-oxide films (ITO) as electrodes (source and drain) and channel. Influence of moisture, temperature and surface modification of the protons such as H+ and Li+ on the proton conductivity and EDL capacitance of the nanogranular films will be investigated. The mechanism of polarization of the proton conducting films at the proton conductor/channel interfaces will be demonstrated. A physical model for such mechanism of polarization of the oxide proton conducting films will be established. Such JL EDLT gated by such nanogranular Al2O3 and SiO2 proton conductors will exhibit a low operation vo

英文关键词: Oxide proton conducting films;Junctionless;Electric-Double-Layer;Low-voltage thin-film transistors;

成为VIP会员查看完整内容
0

相关内容

数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
43+阅读 · 2021年9月7日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
38+阅读 · 2020年11月2日
专知会员服务
107+阅读 · 2020年10月31日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
57+阅读 · 2021年5月3日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关主题
相关VIP内容
数据中心传感器技术应用 白皮书
专知会员服务
42+阅读 · 2021年11月13日
专知会员服务
43+阅读 · 2021年9月7日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
38+阅读 · 2020年11月2日
专知会员服务
107+阅读 · 2020年10月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员