项目名称: 多相流自由界面不稳定性的计算流体力学研究

项目编号: No.11202020

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 邓小龙

作者单位: 北京计算科学研究中心

项目金额: 26万元

中文摘要: 多相流自由界面的不稳定性问题是多相流中的重要问题,与液滴破碎、燃料输运、水下爆炸、喷流、惯性局限融合等许多问题紧密关联。在一些复杂的系统中,更是存在多种不稳定性机制相互竞争。通过研究这类问题,在科学上可以帮助人们理解许多现象背后的物理机制,在工程上可以帮助发展相关设计和工艺。本课题拟在一种既有可压缩多相流计算流体力学算法体系基础上继续发展,并应用其更深入的研究多相流自由界面的不稳定性问题。从一些基本的Rayleigh-Taylor、Kelvin-Helmholtz和Richtmyer-Meshkov不稳定性问题出发,在线性阶段与理论解进行对比,在包括非线性阶段的更完整的过程中和实验结果进行对比。一方面完善算法体系,一方面研究探讨物理过程。在此基础上,进一步研究包括高速气流中的液滴破碎这样的更复杂的系统,研究其中各种不稳定性各种模式的相互竞争,探讨不同流体属性和不同的流场对不稳定性的影响。

中文关键词: 计算流体力学;多相流;不稳定性;清晰界面;切割网格方法

英文摘要: Interfacial instability in multi-fluid system is very important in the study of multi-phase flows. Many phenomena, including drop aerobreakup, fuel transportation, under-water explosion, jet, and inertial confinement fusion are closely related to it. In some complex systems, several different instabilities compete with each other. With the study on this kind of problems, people can get better understanding about the inside physics mechanisms, and can get more ideas to improve designs and techniques. In this project, we plan to continue the development of a compressible multi-phase computational fluid dynamics algorithm system,and apply it to study the multi-fluid interfacial instability problems. We plan to start from some basic instabilities, including Rayleigh-Taylor, Kelvin-Helmholtz and Richtmyer-Meshkov. In the linear region, we can compare with some existing theoretical solutions; in the bigger region, including the nonlinear region, we can compare with some experimental results. In this way, we can improve the algorithm system and study the physics process. Upon these, we plan to continue to study more complex systems, like drop aerobreakup. The competition of different instabilities and different modes, the effects of different fluid properties and different flow fields will be studied.

英文关键词: Computational Fluid Dynamics;Multi-phase flows;Instability;Sharp Interface;cut cell method

成为VIP会员查看完整内容
0

相关内容

元宇宙知识 | 如何在元宇宙中应用众多GAN模型???
专知会员服务
34+阅读 · 2022年1月29日
专知会员服务
48+阅读 · 2021年8月4日
【干货书】从初等问题看数学的本质,400页pdf
专知会员服务
56+阅读 · 2021年5月28日
专知会员服务
109+阅读 · 2021年4月7日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
78+阅读 · 2020年9月3日
【经典书】统计学,806页pdf,解锁数据的力量
专知会员服务
79+阅读 · 2020年8月12日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
30+阅读 · 2020年3月26日
作业帮基于Flink的实时计算平台实践
AI前线
0+阅读 · 2022年1月27日
容器会取代虚拟机吗?
InfoQ
0+阅读 · 2022年1月13日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【学界】实景照片秒变新海诚风格漫画:清华大学提出CartoonGAN
GAN生成式对抗网络
14+阅读 · 2018年6月20日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
27+阅读 · 2021年2月17日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关VIP内容
元宇宙知识 | 如何在元宇宙中应用众多GAN模型???
专知会员服务
34+阅读 · 2022年1月29日
专知会员服务
48+阅读 · 2021年8月4日
【干货书】从初等问题看数学的本质,400页pdf
专知会员服务
56+阅读 · 2021年5月28日
专知会员服务
109+阅读 · 2021年4月7日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
78+阅读 · 2020年9月3日
【经典书】统计学,806页pdf,解锁数据的力量
专知会员服务
79+阅读 · 2020年8月12日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
30+阅读 · 2020年3月26日
相关资讯
作业帮基于Flink的实时计算平台实践
AI前线
0+阅读 · 2022年1月27日
容器会取代虚拟机吗?
InfoQ
0+阅读 · 2022年1月13日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【学界】实景照片秒变新海诚风格漫画:清华大学提出CartoonGAN
GAN生成式对抗网络
14+阅读 · 2018年6月20日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员