项目名称: 外延纳米结构金属氧化物基锂离子电池负极的制备及锂离子迁移机制研究

项目编号: No.21303270

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 何震

作者单位: 中南大学

项目金额: 25万元

中文摘要: 金属氧化物由于其高理论比容量而成为制备锂离子电池负极的热门材料,使用经过纳米尺寸设计和加工的金属氧化物或者金属氧化物基复合材料(如:掺碳)作为锂离子电池负极能极大的提高电池性能。本项目用晶格取向不同的金属氧化物外延膜分别作为电极,系统研究锂离子沿不同晶格取向嵌脱过程的差异对电极性能造成的影响,揭示锂离子迁移过程各向异性的机理,为金属氧化物电极材料的合成提供指导。同时,采用一步电沉积的方法制备晶格取向可控的高性能金属氧化物晶体纳米结构、以及金属氧化物/碳复合材料锂离子电池负极。电沉积方法简单快速、成本低,可方便的控制金属氧化物的晶体结构、化学组成、形貌、生长取向等参数,以便系统研究材料自身性质与其电化学性能之间的关系。并且,制备过程省去了传统电极制备过程中煅烧、粘合剂涂覆等繁琐步骤,用一步反应将目标材料直接制备于集流体上。因此,本项目对锂离子电池电极材料的合成及理论发展都具有重要的意义。

中文关键词: 金属氧化物;纳米结构;定向外延;锂离子电池;负极

英文摘要: Metal oxides are promising anode materials for lithium-ion batteries because of their high theoretical capacities. The performance of the metal oxide-based lithium-ion battery anodes could be enhanced by using nanostructured metal oxides or metal oxide/carbon hybrid materials. The focus of the proposed work is the fabrication (by electrodeposition) of the nanostructured metal oxide-based anode materials for lithium-ion batteries and study on the lithium-ion transport mechanism in the lattices of the metal oxide anodes. The specific topics to be explored are (i) anisotropic lithium ion transport along different lattice directions in the metal oxide anode materials, (ii) electrodeposition of epitaxial CoxFe3-xO4 nanostructured arrays as high-performance anodes for lithium-ion batteries, and (iii) electrodeposition of metal oxide/carbon hybrid anode materials for lithium-ion batteries. A key technological impact of the study on the anisotropic lithium ion transport along different lattice directions in metal oxide anodes is the development of a relationship between the lithium-ion transport processes and the crystal structure of the metal oxide anodes, which could possibly be used to guide the synthesis of the metal oxide materials for lithium-ion batteries. We plan to study this by comparing the performance of th

英文关键词: Metal Oxide;Nanostructure;Epitaxial;Lithium-Ion Battery;Anode

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
55+阅读 · 2021年6月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
55+阅读 · 2021年6月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员