项目名称: 基于钯纳米电化学甲烷传感器的研究

项目编号: No.21205075

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 分析化学

项目作者: 李忠平

作者单位: 山西大学

项目金额: 22万元

中文摘要: 灵敏度高、选择性好和使用简便的甲烷传感器在煤矿瓦斯监控,保证安全生产等方面具有广阔应用前景,基于甲烷高选择性材料的电化学传感器尚无研究报道。本项目拟从材料制备和分析传感器角度出发,着重开展甲烷气敏新材料制备方法和电化学甲烷气体传感器响应机制的研究。设计以对甲烷分子具有高选择性的穴蕃类超分子为钯纳米的支撑材料,制备出对甲烷分子具有高选择性捕获和高电化学活性的纳米复合材料,将该材料作为甲烷气体的传感材料, 采用共价键合修饰电极技术将甲烷敏感材料修饰于玻碳、氧化铟锡导电玻璃等电极表面构建甲烷传感器的气敏电极或器件,提高传感器对甲烷分子的选择性和灵敏度,建立一种纳米电化学检测甲烷气体分子的新方法。探索甲烷分子在钯纳米材料修饰电极上的电化学反应机制,为研发甲烷电化学仪器奠定理论基础。在此基础上将电化学传感器系统集成化,实现室温下对甲烷气体的直接检测,并拓展纳米电化学传感器在气体检测领域的应用范围。

中文关键词: 甲烷;气体传感器;纳米复合材料;分析电化学;

英文摘要: High sensitivity、good selectivity and ease of use of CH4 gas sensor in the coal mine gas monitoring to ensure safe production has broad application prospects, no studies have reported electrochemical gas sensors based on highly selective materials in methane. The project will be planned from the starting material preparation and analysis of sensor angle, has focused on the preparation of new materials, methane gas sensing and electrochemical gas sensor response mechanism. The palladium nanocomposites will be prepared by supramolecular of cryptophanes A with high selectivity to methane molecules use as support materials. This nanocomposites will be provided with highly selectivity and high electrochemical activity to oxide methane molecules, and can be use as a methane sensing material. The methane sensitive materials will be covalently modified onto glassy carbon electrode and indium tin oxide conductive glass electrode surface, and then to build a methane sensor gas electrode or device. A novel method will be to establish based on the a nano-electrochemical principle, which can improve the selectivity and sensitivity of the sensor for methane molecules. The the electrochemical reaction mechanism of methane molecules on the Pd nanomaterials modified electrode will be explored and provided theoretical basis to el

英文关键词: Methane;Gas Sensor;Nanocomposite;Analytical Electrochemistry;

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
深度强化学习的攻防与安全性分析综述
专知会员服务
25+阅读 · 2022年1月16日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
60+阅读 · 2021年3月25日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
深度强化学习的攻防与安全性分析综述
专知
1+阅读 · 2022年1月16日
数据中心传感器技术应用 白皮书
专知
0+阅读 · 2021年11月13日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
深度强化学习的攻防与安全性分析综述
专知会员服务
25+阅读 · 2022年1月16日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
60+阅读 · 2021年3月25日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
相关资讯
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
深度强化学习的攻防与安全性分析综述
专知
1+阅读 · 2022年1月16日
数据中心传感器技术应用 白皮书
专知
0+阅读 · 2021年11月13日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员