项目名称: 基于格式塔法则的图像分析与抽象
项目编号: No.61272293
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 黄田津
作者单位: 香港中文大学深圳研究院
项目金额: 82万元
中文摘要: 图像的抽象化简化了不必要的图像细节,精确地保留下重要的视觉内容,被广泛地运用到了卡通,漫画,插图,以及简化地图等应用中。但是,现有大多数高质量的抽象结果都是人工完成的。随着互联网上海量的图像和视频数据激增,自动的图像抽象化方法变得越来越重要,可令用户更有效地从图像中搜寻需要的信息。现有算法主要是基于低阶的图像特征,效果不能满足要求。心理学家已经证实人们的视觉感知不仅基于低阶的图像特征,更依赖于众多图像元素的复杂交互。格式塔心理学描述了人们综合认知一组表面上没有关联视觉元素,识别结构形状的现象。我们相信,通过对格式塔现象进行计算建模,可以识别中阶的图像特征并将之应用到相关的图像抽象化中。本项目计划将之转化成一个多标签图割分组问题,并用优化算法来求解。本项目的研究成果终将会令该领域许多潜在应用获益良多,包括图像抽象化和概括化,图像尺寸调整,计算漫画,以及依赖于简化地图的诸多基于位置的服务。
中文关键词: 格式塔法则;图像分析;图像抽象;感知计算;
英文摘要: Visual abstraction simplifies unnecessary details and precisely presents prominent visual content in the image. It has been widely adopted from cartoon and manga production, illustration, or even simplified map production, etc. With the overwhelming visual data (photo and video) available over the internet, automatic visual abstraction becomes even more crucial for users to efficiently identify the desired information. However, most existing high-quality abstraction results are manually prepared. This demonstrates the ineffectiveness of existing automatic abstraction methods which mainly based on low-level features. In fact, the success of abstraction is highly related to human visual perception. Psychologists already proved that human visual perception does not solely rely on low-level features, but on more complex interaction among various stimuli. In particular, gestalt psychology describes the phenomenon of the human perception in recognizing "form" (gestalt), instead of a set of unrelated primitive points or segments (low-level features). For instance, we perceive a set of collinearly and equally spaced line segments as a continuous line, instead of a set of unrelated dashes. We believe, by computationally modeling the gestalt phenomena, we may identify the middle-level features (gestalts) which in turn sho
英文关键词: Gestalt laws;Image analysis;Image abstraction;Perception computing;