项目名称: 氢键调控实现超分子组装结构整体光响应的STM研究

项目编号: No.21303208

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李敏

作者单位: 中国科学院高能物理研究所

项目金额: 25万元

中文摘要: 分子自组装是制备分子光学器件的有效方法。分子器件的性能与界面分子的光响应及其在界面排列的有序性密切相关。在光活性分子中引入长链烷烃可有效提高组装结构的稳定性,但由于C-C共价键的刚性及烷基链与基底间较强作用的限制,光响应只能发生在局部区域,破坏了组装结构的有序性,虽然部分实现了器件的功能,但远不能满足要求。因此,如何实现更大面积乃至整个区域的分子光响应,是提高纳米光学器件性能的关键。在基于氢键的分子自组装领域的研究基础上,申请人提出用氢键联接的双组分代替以共价键联接的单组分来构筑光响应纳米结构,利用氢键键长和键角的微观灵活性实现对组装结构大范围的光调控。利用STM技术探测氢键对光引发的自组装结构微观变化的调控作用,运用量子力学方法进行理论模拟和分析,揭示这类光活性纳米结构形成的微观机制及氢键在该体系中的调控机制,实现对该类功能纳米结构的可控构筑,为制备高性能纳米光学器件奠定实验和理论基础。

中文关键词: 分子自组装;氢键调控;光聚合;扫描探针显微技术;

英文摘要: Self-assembly is an effective method for preparing optical nanodevices. The performance of molecule-based devices depends greatly on the light response of organic molecules and the order of their assembly at interfacial regions. Introducing long alkyl groups to a photosensitive organic molecule can dramatically increase the order and stability of its assembled structure on surfaces. However, the light response of these species can only occur very locally due to the rigidity of C - C covalent bonds and the strong interaction between long alkyl chains and the substrate. This destroys the order of the assembled structure over a wider area and consequently decreases the efficiency of nanodevices. It remains a great challenge, though, one of the keys to improving the performance of nanodevices is to control the photo-response of assembled organic molecular structures over a large area or even the whole interfacial region. On the basis of the solid background in the field of hydrogen-bonded molecular self-assembly, the applicant proposes to study the construction of multifunctional organic molecular nanostructures with light response using hydrogen-bonded binary system instead of covalent-based single component system. Due to the flexibility of the hydrogen bonds, the assembly and the light response of molecular assem

英文关键词: self assembly;hydrogen-bonded regulation;photo-polymerization;scanning tunneling microscopy;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
109+阅读 · 2021年4月7日
【NeurIPS 2020 】神经网络结构生成优化
专知会员服务
20+阅读 · 2020年10月24日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关主题
相关VIP内容
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
109+阅读 · 2021年4月7日
【NeurIPS 2020 】神经网络结构生成优化
专知会员服务
20+阅读 · 2020年10月24日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员