项目名称: 金纳米复合共振基元增强有机光伏器件的宽谱光吸收效率

项目编号: No.11204205

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 崔艳霞

作者单位: 太原理工大学

项目金额: 28万元

中文摘要: 有机光伏电池对大规模利用太阳能并提供廉价电能具有重要意义。目前,有机光伏产业化由于其能量转换效率较低而受到限制,原因在于激子分离效率与光吸收效率之间存在矛盾。使用金属纳米结构等光捕获机制可以有效解决这一矛盾。在活性层厚度不改变的情况下,该方法可大幅度提高光在活性层内的吸收率,这已经成为近年来太阳能领域的一项重要技术。 迄今为止,已发表的相关研究均基于单一尺寸的金属纳米结构,所激发的表面等离子激元共振峰单一,只能在较窄频段内改善活性层的光吸收效果。这无法满足对宽谱太阳光的捕获需求,浪费了大量的入射能量。本项目提出在有机光伏器件中引入金纳米复合共振基元,开展金纳米复合共振基元中表面等离子激元的物理特性及其与光活性层相互作用的物理机制研究,实现OPVs活性层对宽谱太阳光吸收效率的大幅度提高,进而从整体上改善OPVs器件的能量转换效率。本项目为开发高效有机光伏器件提供基础和帮助。

中文关键词: 表面等离激元;光吸收;有机光伏电池;共振;金颗粒

英文摘要: Organic photovoltaic cells are of great significance on large-scale use of solar energy and supply of cheap electricity. Currently, its industrialization development is hindered due to the low energy conversion efficiency limited by the contradictions between exciton separation efficiency and optical absorption efficiency. The use of light trapping mechanisms, like metallic nanostructures, can effectively resolve this contradiction. Such method can greatly improve the light absorption efficiency in the active layer without changing the thickness of the active layers and it has become an important technology in the field of solar energy in recent years. Most of previous works adopted metallic nanostructures of single size or single morphology which caused surface plasmons resonating at single frequency and thus the enhancement of light absorption in the active layer was relatively weak. This could cause some waste of the incident solar energy because the solar spectrum is of broadband. This project proposes to introduce compound gold nano-resonators into the organic photovoltaic cells, to research on the physical properties of surface plasmons generated by the compound gold nano-resonators and the coupling and interaction effect between the broadband surface plasmons and the photoactive layer, and to achieve su

英文关键词: surface plasmons;optical absorption;organic photovoltaic cells;resonances;gold nano-particles

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
多样性算力技术愿景白皮书
专知会员服务
75+阅读 · 2021年4月29日
专知会员服务
22+阅读 · 2021年3月23日
【WWW2021】本体增强零样本学习
专知会员服务
32+阅读 · 2021年2月26日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
28+阅读 · 2021年10月1日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
多样性算力技术愿景白皮书
专知会员服务
75+阅读 · 2021年4月29日
专知会员服务
22+阅读 · 2021年3月23日
【WWW2021】本体增强零样本学习
专知会员服务
32+阅读 · 2021年2月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员