项目名称: 基于同步辐射研究纳米气泡的电化学方法的发展

项目编号: No.11305252

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 张立娟

作者单位: 中国科学院上海应用物理研究所

项目金额: 30万元

中文摘要: 固/液界面纳米气泡是否真实存在及长寿命的稳定机制,由于其在工业,生物,医学和环境等领域中的重要意义和潜在应用,已成为多学科科研工作者的研究热点。本项目基于纳米气泡前期研究的优势,拟建立电化学可控产生纳米气泡的方法,结合先进的软X射线显微技术优势,如纳米尺度的空间成像分辨率及高能量分辨的化学元素近边吸收光谱,为纳米级气泡真实存在提供最直接的化学证据,以期能够阐明纳米气泡的稳定机制,揭示微观气体聚集的特殊规律;研究纳米气泡在碳纳米管内的吸附情况,为纳米气泡在环境水污染修复方面的应用奠定坚实的基础;期望建立电化学方法和同步辐射纳米成像相结合的实验平台,为光源用户在能源和环境方面的研究提供更好的服务。

中文关键词: 同步辐射技术;纳米气泡;电化学方法;原子力显微技术;

英文摘要: Whether nanoscale gas bubbles at solid/liquid interface exist or not,and their stability mechanisms, because of their significance and potential application in the fields of the industry, biology, medicine, and environment,have become very hot topics researched by many researchers. Based on the advantages of research experiences before, this project intends to establish the electrochemical method producing controllably nanometer gas bubbles by combining advanced soft X-ray microscopic technology advantages, such as nano scale spatial imaging resolution and high energy resolution of the chemical elements near edge absorption spectrum.These results will provide the most direct chemical evidence for nanometer gas bubbles,clarify the mechanism of nanobubbles and reveal the special properties of gas accumulation at nanometer scale. Researching the absorption of nanometer bubbles in the carbon nanotubes will be helpful for the potential applications of nano bubbles in the repairing of pulluted water.At the same time,it will be expected to establish the experimental platform of electrochemical method combining with nano imaging of synchrotron radiation for light source users with better service in the fields of energy and environments.

英文关键词: sychrotron radiation technique;nanobubbles;electrochemical method;atomic force microscopy;

成为VIP会员查看完整内容
0

相关内容

前沿综述:集体智能与深度学习的交叉进展
专知会员服务
70+阅读 · 2022年2月6日
专知会员服务
45+阅读 · 2021年10月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
94+阅读 · 2020年12月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
专知会员服务
101+阅读 · 2020年11月27日
深度学习模型终端环境自适应方法研究
专知会员服务
31+阅读 · 2020年11月13日
基于深度学习的小目标检测方法综述
专知
1+阅读 · 2021年4月29日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
前沿综述:集体智能与深度学习的交叉进展
专知会员服务
70+阅读 · 2022年2月6日
专知会员服务
45+阅读 · 2021年10月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
94+阅读 · 2020年12月8日
小目标检测技术研究综述
专知会员服务
114+阅读 · 2020年12月7日
专知会员服务
101+阅读 · 2020年11月27日
深度学习模型终端环境自适应方法研究
专知会员服务
31+阅读 · 2020年11月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员