项目名称: 改性石墨烯对化学毒剂分子的吸附性质研究

项目编号: No.51202017

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 胡小颖

作者单位: 长春大学

项目金额: 25万元

中文摘要: 寻找安全、有效的吸附材料从而达到对化学毒剂的有效识别、清除、防护是众多科研工作者努力的方向和目标。 石墨烯基纳米材料在吸附方面具有独特的优势,是一种理想的吸附材料。而理想石墨烯对分子的吸附一般为较弱的物理吸附,我们必须对理想石墨烯进行改性,从而实现其优异的吸附性能。本项目基于第一原理密度泛函理论,利用过渡金属(Pt、Fe、Co、Ni)及Stone-Wales缺陷对石墨烯进行改性后,实现体系对化学毒剂(芥子气、沙林、梭曼)的吸附作用。通过计算各种吸附情况下的吸附能、电荷分布、能带、态密度等相关性质,探讨体系吸附稳定性、电荷转移、成键等内在微观机制。项目的开展有利于明确和理解毒剂分子在石墨烯基纳米材料上的吸附作用,并将为制备安全、有效的化学毒剂防护系统提供理论依据。

中文关键词: 密度泛函理论;石墨烯;吸附;掺杂;化学毒剂

英文摘要: Spills of chemical warware agents can create extreme hazards. Therefore, the decontamination of this chemical warfare agent becomes a major challenge for researchers, and continues of national security interest. As a new type of carbon-based materials, graphene, in particular, its fascinating adsorption properties has attracted tremendous interest. However, the molecules interact weakly with intrinsic graphene. Therefore, modification on intrinsic grphene should be carryed out to strengthen the gas molecules adsorption on graphene-based materials. In this project, the adsorption mechanisms of chemical warware agents on modified graphene, including various transition metals (Pt, Fe, Co, Ni) embedded, Stone-Wales (SW) defects, and a combination of these two, will be investigated by first-principles density functional theory. By calculations of the adsorption energies, Mulliken charge population, energy band and density of electronic states, detailed analysis of adsorption stability, the charge transfer, chemical bonding of these system will be explored. The implementation of this project will provide guidance for effective adsorbent and protection against these chemical warware agents.

英文关键词: Density functional theory;graphene;adsorption;doping;chemical warware agents

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【CVPR2020-CMU】无数据模型选择,一种深度框架潜力
专知会员服务
21+阅读 · 2020年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【CVPR2020-CMU】无数据模型选择,一种深度框架潜力
专知会员服务
21+阅读 · 2020年4月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
微信扫码咨询专知VIP会员