项目名称: 放电等离子烧结块体非晶合金的微观结构演变与力学行为关系的研究

项目编号: No.51471139

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 龙志林

作者单位: 湘潭大学

项目金额: 85万元

中文摘要: 放电等离子烧结块体非晶合金尽管具有高强度,但塑性缺失严重制约了这类材料的工程应用。为此,本项目以放电等离子烧结块体非晶合金为研究对象,采用实验和数值模拟相结合的方法,针对其塑性缺失问题进行系统而定量的研究。研究内容包括4个方面:(1)用气雾化法制备非晶合金粉末,通过放电等离子烧结技术制备块体非晶合金材料;(2)利用高分辨透射电子显微镜、X射线衍射、扫描电子显微镜、差示扫描量热仪、纳米压痕仪等分析放电等离子烧结技术制备的块体非晶合金及其预变形(包括轧制和循环压缩载荷)后的微观结构和力学行为;(3)结合实验、理论分析和数值模拟,细致探讨微结构缺陷及其演化与块体非晶合金黏弹性行为和黏塑性行为的关联;(4)优化放电等离子烧结工艺和预变形工艺,制备具有5%以上压缩塑性的烧结块体非晶合金材料。本项目的研究将有利于澄清非晶合金变形机理与结构及性能的关系,具有重要的学术价值和应用价值。

中文关键词: 块体非晶合金;微观结构;力学行为;放电等离子烧结;纳米压痕

英文摘要: Although spark plasma sintered bulk amorphous alloys posses high strength, their industrial applications are largely restricted for poor plasticity. By combining the numerical analysis with experimental testing, this project thus aims at systematic and quantiative investigation on the above mentioned problem. The main content of the project includes: (1) Glassy powders are produced by a high pressure argon gas atomization method, and bulk amorphous alloys are fabricated by spark plasma sintering (SPS)of these gas-atomized glassy alloy powders; (2)Micro-structure and mechanical behavior of the as-prepared and pre-deformed(including cold-rolled and cycle compression ) bulk amorphous alloys fabricated by SPS are carefully elucidated using high-resolution transmission electron microscopy (HRTEM), x-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC), nanoindentor, and so on; (3) Based on experimental and theoretical analysis, the relation between visoelastic( viscoplastic ) deformarion behavior and microstructure defect as well as its evolution are explored in detail; (4) Spark plasma sintered bulk amorphous alloys with a compressive plasticity over 5% are obtained by optimization of process parameters in SPS and pre-deformation process parameters.The current project provides an insight into the deformation of amorphous alloys and their correlation with strcture and properties, therefore it has important theoretical and practical significance.

英文关键词: Bulk amorphous alloy;Microstructure;Mechanical behavior;Spark plasma sintering;Nanoindentation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
32+阅读 · 2021年10月9日
专知会员服务
41+阅读 · 2021年9月7日
【NAACL2021】Graph4NLP:图深度学习自然语言处理,附239页ppt
专知会员服务
105+阅读 · 2021年6月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
38+阅读 · 2021年2月8日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
小贴士
相关VIP内容
专知会员服务
32+阅读 · 2021年10月9日
专知会员服务
41+阅读 · 2021年9月7日
【NAACL2021】Graph4NLP:图深度学习自然语言处理,附239页ppt
专知会员服务
105+阅读 · 2021年6月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
38+阅读 · 2021年2月8日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员