项目名称: 原位XAFS/SAXS研究液相合成半导体纳米材料的生长机制

项目编号: No.11305198

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 默广

作者单位: 中国科学院高能物理研究所

项目金额: 30万元

中文摘要: 纳米材料生长机制的研究是实现纳米材料可控制备的重要前提,对我国纳米材料的发展和应用都起着关键作用。硫化锌(ZnS)作为目前电致发光的最佳基质之一,其液相合成的本质机理仍不清楚。本项目将通过两套自制的原位测量装置,利用同步辐射XAFS和SAXS技术在秒量级甚至毫秒量级时间分辨尺度上实时跟踪ZnS等半导体纳米粒子的形成过程,通过研究原子近邻配位结构、电子结构、粒子尺寸与形状等随反应时间的演化过程,获得ZnS等纳米粒子成核路径、生长方式、生长速度等传统实验无法企及的生长信息。结合实验参数对最终产物的影响,建立纳米粒子的生长模型,探索纳米粒子的生长机制,为制备具有特定尺寸和形状的纳米粒子提供理论和实验依据。

中文关键词: 原位测量;同步辐射技术;纳米材料;生长机制;硫化锌

英文摘要: Studying the growth mechanism of nanomaterials is an important prerequisite for preparing nanomaterials with specific structures and functions,which plays a vital role in the development and application of nanomaterials. The growth mechanism of zinc sulphide, which is one of the optimum electroluminescent matrix, is still not clear. This research project will focus on carrying out a second, even millisecond time-resolved study, with the help of two set of homemade in-situ equipments, on the solution-based synthesis of ZnS, CuS semiconductor nanomaterials by using synchrotron radiation XAFS and SAXS technologies. In-situ XAFS technique is employed to monitor the variations of the atomic local structure and electronic structure in the growing process. In-situ SAXS technique is accepted to track the evolution mode of the particle size and shape after nucleation. We can acquire the detail growing information, including nucleation pathway, growth mode, growth rate et al, which can't be obtained from traditional experiments. Combining with the effects of the experimental conditions on the terminal cluster, the growth mode and growth mechanism of nanomaterials will be proposed, which will lay a solid foundation for controllable preparation.

英文关键词: in-situ measurement;synchrotron radiation technology;nanomaterial;growth mechanism;Zinc sulfide

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
209+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
专知会员服务
90+阅读 · 2020年10月30日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
16+阅读 · 2020年5月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
25+阅读 · 2018年8月19日
小贴士
相关VIP内容
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
209+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
专知会员服务
90+阅读 · 2020年10月30日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员