项目名称: 具有核壳结构的镍锰钴基三元复合正极材料的研究

项目编号: No.51304052

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 矿业工程

项目作者: 罗文斌

作者单位: 福州大学

项目金额: 25万元

中文摘要: 三元正极材料Li[NixMnxCo1-2x]O2因具有高容量、热稳定性好和对环境友好等优势成为锂离子电池研究的热点之一。但Li[NixMnxCo1-2x]O2 作为电动汽车用锂离子动力电池正极材料,其电化学性能尚待改善,尤其是高截止电压和高倍率下的充放电性能有待进一步提高。本项目采用金属氟化物和纳米碳对其进行双重修饰改性,以提高电化学性能和热稳定性能。采用金属氟化物表面修饰提高Li[NixMnxCo1-2x]O2材料在充放电过程中的结构稳定性,阻止电极材料与电解液的直接接触,抑制循环过程中HF对电极材料的腐蚀,减少电解液与电极材料的副反应,从而提高材料的循环性能;利用纳米碳包覆能提高材料的电子导电性进而提高其倍率性能,而且纳米碳包覆还能减少电池极化。通过本项目的研究,揭示金属氟化物和纳米碳双重修饰对锂离子传输特性以及电导率的影响规律,从而为锂离子动力电池正极材料的研发提供新思路和科学依据。

中文关键词: 锂离子电池;正极材料;锂镍钴锰氧;核壳结构;表面修饰

英文摘要: Li[NixMnxCo1-2x]O2 material has become one of the promising cathode material systems for their high capacity, good thermal stability, environmental-friendly in the lithium ion batteries. However, the electrochemical performance of the Li[NixMnxCo1-2x]O2 material as a cathode for electric vehicle technology need to be improved, especially charged to higher voltage or discharged at higher rates. In this project, the material is double-modified using metal fluorides and nano-carbon to improve the Li[NixMnxCo1-2x]O2 electrochemical performance and thermal stability. The metal fluorides coating can prevent the direct contact of electrode from electrolyte, and thus suppress the undesirable interaction between them and the dissolution of transition metal ions attacked by HF acid, and accordingly the higher rate performances are enhanced further. Nano-carbon coating can enhance electron conductivity to improve the high rate capability and cycling stability of Lithium ion batteries. Nano-carbon also can reduce cell polarization. The study shows the law and mechanism how the metal fluorides and nano-carbon layers influence the lithium ion transport and electronic conductivity, how the undesirable interactions are restrained. These all can provide new ideas and theoretical guidance for the development and application of th

英文关键词: Lithium ion batteries;Cathode material;Li[Ni;Mn;Co]O2;Core-shell structure;Surface modification

成为VIP会员查看完整内容
0

相关内容

专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
29+阅读 · 2021年1月9日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
17+阅读 · 2019年3月28日
小贴士
相关VIP内容
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
专知会员服务
29+阅读 · 2021年1月9日
专知会员服务
51+阅读 · 2020年12月28日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员